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Abstract: We investigate the thermodynamics of a thermal field theory in presence of

both a baryon and an isospin chemical potential. For this we consider a probe of several

D7-branes embedded in the AdS-Schwarzschild black hole background. We determine the

structure of the phase diagram and calculate the relevant thermodynamical quantities

both in the canonical and in the grand canonical ensemble. We discuss how accidental

symmetries present reflect themselves in the phase diagram: In the case of two flavors,

for small densities, there is a rotational symmetry in the plane spanned by the baryon

and isospin density which breaks down at large densities, leaving a Z4 symmetry. Finally,

we calculate vector mode spectral functions and determine their dependence on either the

baryon or the isospin density. For large densities, a new excitation forms with energy

below the known supersymmetric spectrum. Increasing the density further, this excitation

becomes unstable. We speculate that this instability indicates a new phase of condensed

mesons.
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1. Introduction

Generalizations of the AdS/CFT correspondence [1, 2] have proven to be very useful in

describing strongly coupled QCD-like theories. In particular, the AdS-Schwarzschild black

hole background provides a gravity dual for four-dimensional N = 4 SU(N) SYM theory

at finite temperature [3]. This is expected to be relevant for describing some aspects of

the strongly coupled quark-gluon plasma. Hydrodynamic methods based on gauge/gravity

duality have been applied very successfully to describing transport processes [4 – 21].

A further important ingredient for obtaining gravity duals of field theories similar to

QCD is the addition of flavor degrees of freedom via the embedding of D7-brane probes [22].

A D7-brane probe embedded in the AdS Schwarzschild background displays an interesting

first-order phase transition between embeddings which do not reach the black hole horizon

and those who do [23 – 26]. The first kind of embeddings is often said to be a “Minkowski

embedding” while the second is called a “black hole embedding”. The phase diagram is

modified in presence of a U(1) baryon chemical potential given by a non-zero vev for the

time component of the gauge field on the brane [27 – 30]. The effect of a finite baryon chem-

ical potential is also studied in the dS4 background, e.g. [31], and in the Sakai-Sugimoto

model, e.g. [32, 33].
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The spectral functions for the D7 system, calculated according to the holographic

prescription of [34, 35], also display a rich structure, as investigated for instance in [36 –

42]. In particular, as shown in [43], in presence of a baryon chemical potential, the vector

quasiparticle resonances approach the supersymmetric meson mass spectrum of [44] for

large values of the quark mass or small values of the temperature. At small values of

the quark mass or large values of the temperature, the frequencies of the resonance peaks

increase with rising temperature. Moreover it was shown in [43] that in presence of an

SU(2) isospin chemical potential given by a non-zero vev for the time component of the

gauge field on a probe of two coincident D7-branes, the vector spectral function displays a

triplet splitting of the resonance peaks.

In the present paper we determine the structure of the phase diagram in presence of

both a U(1) baryon and an SU(2) isospin chemical potential, of the form

µ = µB

(

1 0

0 1

)

+ µI

(

1 0

0 −1

)

. (1.1)

We thus restrict ourselves to an isospin chemical potential in the σ3 direction in flavor

space. This restriction was suggested and used also in [45]. The values of µB and µI are

given in terms of fields which depend on the holographic radial direction. Some features of

this setup are generalized to a general small number Nf ≪ Nc of flavor probe branes. For

the discussion of the phase structure we restrict to Nf = 2.

Using a suitable linear combination of the flavor components, the action determin-

ing the brane embedding splits into a sum of Abelian contributions. Moreover the choice

of (1.1) leads to a number of accidental symmetries which we list in detail. We discuss the

case of arbitrary Nf as well as Nf = 2. In addition to a reflection and a permutation sym-

metry, there is also an approximate O(Nf ) symmetry if the baryonic and isospin densities,

parametrized by d̃B and d̃I , are small.

We investigate the phase diagram and calculate thermodynamic quantities such as the

free energy (grand potential), entropy, energy and speed of sound in the canonical (grand

canonical) ensemble. Generically, a special case arises when the normalized baryon and

isospin densities coincide, dI = dB . The relation |dI | = |dB | determines fixed lines of the

permutation and reflection symmetry transformations.

In the canonical ensemble at vanishing isospin density, there is a phase transition

between black hole embeddings1 below a critical baryon density [27]. At both finite baryon

and isospin density, the according critical point becomes a critical line which displays the

approximate O(2) symmetry up to a small derivation which we quantify. We proceed by

investigating a new first order phase transition in the density plane in the limit of large

quark mass over temperature ratio. The phase diagram clearly displays the symmetry fixed

lines |dI | = |dB | at which the chemical potentials develop a discontinuous gap, which marks

the first order phase transition. This is similar to what is observed in two-color QCD [46,

figure 1]. In the four different regions of the phase diagram, the larger of the two densities

1Note that as discussed in [28], this is really a transition between a black hole and a mixed phase, since

the lower energy black hole phase has been shown to be unstable.
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measures the degrees of freedom in our setup and contributes linearly to the free energy.

The smaller density contributes nonlinearly and may be interpreted as a electrostatic-like

charge induced by the non-Abelian charges of the quarks.

In the grand canonical ensemble, the sum µB +µI is relevant. For µB +µI < Mq there

is a black hole/Minkowski phase transition which is absent for µB + µI > Mq, with Mq

the bare quark mass. As we discuss in detail, a new phase becomes visible in the grand

canonical phase diagram. This is related to the fact that it is not possible to find a bijective

map between the canonical and the grand canonical ensemble in the limit of large mass

over temperature ratio and of chemical potentials of the order of the quark mass. This

implies an instability, e.g. [47, chap. 3].

This motivates us to calculate the spectral function for the gauge field fluctuations in

the canonical ensemble at either finite baryon or finite isospin particle density. We identify

resonance peaks of the spectral functions with mesonic quasiparticles. For finite baryon

density, it was shown in [43] that for µB ≈ Mc, with Mc the renormalized quark mass

in the plasma, the spectrum of these particles approaches the supersymmetric spectrum

Mn/(2πT ) = m
√

(n+ 1)(n + 2)/2, with m = 2Mq/(
√
λT ) found in [44]. The quasiparticle

resonances become very narrow in this case. Here, however, we investigate the case of large

baryon density and find that these resonances become wide, i.e. unstable, in this limit.

In the case of finite isospin density, we additionally find a new excitation. This new

resonance develops at an energy below M = 2πTm. The new resonance becomes the lowest

vector mesonic excitation of the system. It becomes unstable at a critical isospin chemical

potential. We interpret this as vector meson condensation, similar to [48]. Moreover we

discuss the structure of the phase diagram in (µI ,Mq/T ) and identify the new phase. We

relate the appearance of this phase to the instability discussed above.

We also calculate the effective baryon diffusion coefficient D within hydrodynamics

from the membrane paradigm. We find that D displays the hydrodynamic crossover rem-

iniscent of the phase transition present at small densities. The position of the crossover

displays a Z4 symmetry in the (dB , dI)-plane.

The paper is organized as follows. In section 2 we introduce the setup of probe D7-

branes in presence of both a baryon and an isospin chemical potential, paying particular

attention to the accidental symmetries. We obtain numerical results for the chemical

potentials and the condensate as functions of the quark mass. In section 3 we study the

phase diagram and thermodynamic quantities such as free energy, entropy and energy in

the canonical ensemble. In section 4 we perform a similar analysis in the grand canonical

ensemble, revealing the possibility of an instability. The hydrodynamic diffusion constant

is studied in section 5. In section 6 we study the spectral functions of mesonic quasiparticle

resonances. For large isospin chemical potentials, we find an instability and identify the

corresponding region in the phase diagram.

2. Holographic setup

2.1 Background and brane configuration

We consider asymptotically AdS5 ×S5 space-time. The AdS5 ×S5 geometry is holograph-

– 4 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

ically dual to the N = 4 super-Yang-Mills theory with gauge group SU(Nc). The dual

description of a finite temperature field theory is an AdS black hole. We use the coordi-

nates of [27] to write the AdS black hole background in Minkowski signature as

ds2 =
1

2

( ̺

R

)2
(

−f
2

f̃
dt2 + f̃d~x2

)

+

(
R

̺

)2

(d̺2 + ̺2dΩ2
5) , (2.1)

with dΩ2
5 the metric of the unit 5-sphere and

f(̺) = 1 − ̺4
H

̺4
, f̃(̺) = 1 +

̺4
H

̺4
, (2.2)

where R is the AdS radius, with

R4 = 4πgsNc α
′2 = 2λα′2 . (2.3)

The temperature of the black hole given by (2.1) may be determined by demanding regu-

larity of the Euclidean section. It is given by

T =
̺H

πR2
. (2.4)

In the following we may use the dimensionless coordinate ρ = ̺/̺H , which covers the range

from the event horizon at ρ = 1 to the boundary of the AdS space at ρ→ ∞.

To include fundamental matter, we embed Nf coinciding D7-branes into the ten-

dimensional space-time. These D7-branes host flavor gauge fields Aµ with gauge group

U(Nf ). To write down the DBI action for the D7-branes, we introduce spherical coordi-

nates {r,Ω3} in the 4567-directions and polar coordinates {L, φ} in the 89-directions [27].

The angle between these two spaces is denoted by θ (0 ≤ θ ≤ π/2). The six-dimensional

space in the 456789-directions is given by

d̺2 + ̺2dΩ2
5 = dr2 + r2dΩ2

3 + dL2 + L2dφ2

= d̺2 + ̺2(dθ2 + cos2 θdφ2 + sin2 θdΩ2
3) ,

(2.5)

where r = ̺ sin θ, ̺2 = r2 + L2 and L = ̺ cos θ. Due to the symmetry, the embedding of

the D7-branes only depends on the radial coordinate ρ. Defining χ = cos θ, we parametrize

the embedding by χ = χ(ρ) and choose φ = 0 using the O(2) symmetry in the 89-direction.

The induced metric G on the D7-brane probes is then

ds2(G) =
̺2

2R2

(

−f
2

f̃
dt2 + f̃d~x2

)

+
R2

̺2

1 − χ2 + ̺2(∂̺χ)2

1 − χ2
d̺2 +R2(1 − χ2)dΩ2

3 . (2.6)

The square root of the determinant of G is given by

√
−G =

√
h3

4
̺3f f̃(1 − χ2)

√

1 − χ2 + ̺2(∂̺χ)2 , (2.7)

where h3 is the determinant of the 3-sphere metric. The embedding function χ will be

determined numerically in section 2.3.3. It depends on the baryon and isospin chemical

potentials we introduce next.
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2.2 Introducing baryon and isospin chemical potentials

We introduce baryon and isospin chemical potential as a non-vanishing time component of

the non-Abelian background gauge field living on the D7-branes [27],

µ = lim
ρ→∞

A0(ρ) . (2.8)

First we consider the case of two different flavors, Nf = 2. The generators of the gauge

group U(Nf = 2) can be chosen as the three Pauli matrices σa completed with the identity

σ0,

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.9)

For simplicity, we only consider the diagonal representations of the gauge group. This is

equivalent to rotating the flavor coordinates until our chemical potential lies in the third

isospin direction. Thus, the field strength tensor FNf = dANf + ANf ∧ ANf on the D7-

branes may be written as

F
Nf=2
µν = FB

µνσ
0 + F I

µνσ
3 . (2.10)

The part of the field strength FBσ0 corresponding to the U(1) gauge group charges the

branes equally and therefore induces a baryon chemical potential [27]. However, the part

F Iσ3 corresponding to the SU(2) gauge group charges the branes differently inducing a

isospin chemical potential [49, 50]. The definition above may be generalized to arbitrary

Nf > 2. Recall that there are (Nf −1) diagonal generators of SU(Nf ) which form the Car-

tan subalgebra. Inspired by the interpretation that a diagonal generator of SU(Nf ) should

charge one brane differently with respect to all others, we write the diagonal generators as

λi = diag(1, . . . ,

i-th position
︷ ︸︸ ︷

−(Nf − 1), . . . , 1) i = 2, . . . , Nf . (2.11)

For this choice of matrices the first flavor component is treated as the reference quantity.

For arbitrary Nf the generator of the baryonic part of the gauge group U(1) is called λ1.

Thus, we can generalize (2.10) to

F
Nf
µν = FB

µνλ
1 +

Nf∑

i=2

F Ii
µνλ

i =

Nf∑

i=1

F Ii
µνλ

i (2.12)

where again FB = F I1 induces the baryon and F Ii for i ≥ 2 the isospin chemical potential

for the i-th flavor component. In our setup, the only non-vanishing components of the

background field strength are F40 = −F04 = ∂ρA0 since A0 depends on ρ only.

2.3 The DBI action and equations of motion

The DBI action determines the shape of the brane embeddings, i.e. scalar fields Φ, as well

as the configuration of gauge fields A on these branes. We consider the case of Nf = 2

coincident D7-branes for which the non-Abelian DBI action reads

SDBI = −TD7Str

∫

d8ξ
√

detQ
√

det (Pab [Eµν + Eµi(Q−1 − δ)ijEjν ] + 2πα′Fab) (2.13)

– 6 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

with

Qi
j = δi

j + i2πα′[Φi,Φk]Ekj , (2.14)

where for a Dp-brane in d dimensions we have µ, ν = 0, . . . , 9, a, b = 0, . . . , p, i, j = (p +

1), . . . , d, Eµν = gµν +Bµν . In our case we set p = 7, d = 10, B ≡ 0. The action (2.13) can

be simplified significantly by using the spatial and gauge symmetries present in our setup.

First we make use of the spatial rotation symmetry in our 8,9-directions in order to rotate to

the frame in which Φ9 ≡ 0. In this particular frame, all the commutators of our two scalar

fields Φ8, Φ9 vanish and thus Qi
j = δi

j . However, the non-Abelian structure of embeddings

and gauge fields is still manifest in the pullback appearing in the action (2.13) as

Pab[gµν ] =gab + (2πα′)2gij

(
∂aΦ

i∂bΦ
j + i∂aΦ

i[Ab,Φ
j ]

+i[Aa,Φ
i]∂bΦ

j − [Aa,Φ
i][Ab,Φ

j]
)
.

(2.15)

The only terms coupling the embeddings Φ to the gauge fields A are given by the com-

mutator terms in equation (2.15). These commutators vanish due to the following ar-

gument. We are free to define the τ0 flavor direction to be the direction parallel to the

non-vanishing embedding Φ8 using the U(1) ⊂ U(Nf ) gauge symmetry. Now we choose our

baryonic gauge field to have only a non-vanishing A0
0dx

0τ0 component. In the dual field

theory, this particular choice corresponds to the case in which the baryon charge represen-

tation and the mass representation are simultaneously diagonalizable. A different choice

is possible and will most likely change the field theory phenomenology. This applies also

to the case of non-coincident Dp-branes. Finally we use the remaining gauge symmetry

SU(Nf ) ⊂ U(Nf ) in order to restrict to an isospin gauge field A along the third flavor direc-

tion only, i.e. A3
0dx

0τ3, without loss of generality. Thus the only representations appearing

in the background are the diagonal elements τ0 and τ3 of U(Nf = 2), which constitute the

Cartan subalgebra. By definition these representation matrices commute with each other

and thus all commutators [Φ, A] vanish. Therefore all terms coupling the scalars Φ to the

gauge fields A vanish, such that their equations of motion decouple as well. In this way we

can consistently truncate the non-Abelian DBI action to

SDBI = −TD7

∫

d8ξ Str

(√

|det
(
Gσ0 + 2πα′FNf =2

)
|
)

= −TD7

∫

d8ξ
√
−GStr

(√

σ0 + (2πα′)2G00G44
(

F
Nf=2
40

)2
)

,

(2.16)

where in the second line the determinant is calculated. Next we determine the square of the

non-vanishing components of the field strength tensor, which is by construction diagonal

in the flavor space,

(

F
Nf =2
40

)2
=
[(
FB

40

)2
+
(
F I

40

)2
]

σ0 + 2FB
40F

I
40σ

3

= diag
{(
FB

40 + F I
40

)2
,
(
FB

40 − F I
40

)2
}

,
(2.17)
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where we used
(
σ3
)2

= σ0. Defining the new fields2

X1 = AB
0 +AI

0 and X2 = AB
0 −AI

0 , (2.18)

the square of the field strength can be written as3

(

F
Nf =2
40

)2
= diag

{

(∂ρX1)
2 , (∂ρX2)

2
}

. (2.19)

Notice that the field Xi is the gauge field living on the i-th brane. Inserting the metric

components, the action (2.16) becomes

SDBI = −TD7

∫

d8ξ

√
h3

4
̺3f f̃(1 − χ2)

×
(√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f2
(1 − χ2)(∂̺X1)2

+

√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f2
(1 − χ2)(∂̺X2)2

)

.

(2.20)

The transformation to the fields Xi decouple the two branes and we obtain a sum of two

Abelian DBI actions. The Abelian actions are known from the pure baryonic case [27] and

we therefore can use the ideas given in the pure baryonic case to study our setup in which

baryon and isospin charges are switched on simultaneously.

Now we generalize this result to arbitrary Nf : Also for this case, we can decouple the

non-Abelian gauge field into Abelian gauge fields on each brane. For simplicity we suppress

the according index Nf on the field strength tensor. We again start from the DBI action

for the D7-branes,

SDBI = −TD7

∫

d8ξ Str
(√

|det(Gλ1 + 2πα′F )|
)

. (2.21)

Since this action is diagonal in flavor space, we are able to evaluate the square root and

the trace directly (for more details see appendix A). After a redefinition of the fields

X1 =

Nf∑

j=1

A
Ij

0 , Xi =

Nf∑

j=1
j 6=i

A
Ij

0 − (Nf − 1)AIi
0 , i = 2, . . . , Nf , (2.22)

where Xi is the i-th flavor component of the gauge field ANf , the non-Abelian DBI action

again becomes a sum of Nf Abelian DBI actions,

SDBI = −TD7

∫

d8ξ

√
h3

4
̺3f f̃(1 − χ2)

×
Nf∑

i=1

√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f2
(1 − χ2)(∂̺Xi)2 .

(2.23)

2To distinguish between the physical basis and the basis, in which the fields decouple, we give the

quantities in the physical basis as AB/I an upper index and the quantities in the decoupled basis as Xi a

lower index.
3Notice that only the time component of the gauge field AB/I does not vanish and depends only on the

radial coordinate ρ: F
B/I
40 = ∂ρA

B/I
0

– 8 –
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Thus we may consider each brane separately with the gauge fields Xi treated as a U(1)

gauge field living on the i-th brane. The action for each brane is the same as the action

for the pure baryonic case [27]. In the following we apply the approach of [27]. First we

calculate the electric displacement di on the i-th brane, which is a constant of motion and

proportional to the flavor charge density,

di =
δSDBI

δ(∂̺Xi)
=(2πα′)2TD7

√

h3̺
3 f̃

2

2f

× (1 − χ2)2∂̺Xi
√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2 f̃
f2 (1 − χ2)(∂̺Xi)2

.
(2.24)

From the relations of the gauge fields (2.22), we can read off the relations between the

conjugate charge densities

dB = dI1 =

Nf∑

j=1

dj , dIi =
∑

j=1
j 6=i

dj − (Nf − 1)di i = 2, . . . , Nf , (2.25)

which for Nf = 2 becomes

dB = d1 + d2 and dI = d1 − d2 . (2.26)

We now construct the Legendre transformation of the action (2.23) to eliminate the fields

Xi in favor of the constants di,

S̃DBI =SDBI −
∫

d8ξ

Nf∑

i=1

Xi
δSDBI

δ(∂̺Xi)

= − TD7

∫

d8ξ

√
h3

4
̺3f f̃(1 − χ2)

√

1 − χ2 + ̺2(∂̺χ)2

×
Nf∑

i=1

√

1 +
8d2

i

(2πα′)2T 2
D7̺

6f̃3(1 − χ2)3
.

(2.27)

The gauge fields can be calculated from the Legendre transformed action by ∂̺Xi =

−δS̃DBI/δdi.

It is convenient to introduce the dimensionless quantity4

d̃i =
di

2πα′̺3
HTD7

. (2.28)

2.3.1 Accidental symmetries

The DBI action (2.27) has the following discrete symmetries:

Permutation: di ↔ dj for i, j = 1, . . . , Nf : Since di is the electric displacement of the

i-th brane and the coincident branes have the same embedding function by definition,

the substitution di ↔ dj interchanges the two branes.

4The definition of d̃ in the pure baryonic case [27] differs from our convention by a factor Nf such that

the dimensionful physical parameters dIi have the same normalization.
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Reflection: di ↔ −di for each i = 1, . . . , Nf : We consider an U(1) gauge field with only

the time component non-vanishing. Since it does not depend on the time, our setup

is like an electrostatic situation. To change the sign of the electric displacement d̃i,

we must change the sign of the gauge field Xi (see equation (2.24)). The sign change

in the gauge field may be induced by a sign change of the electric charge generating

the gauge field Xi, which may be interpreted as an interchange between particle and

anti-particle. The symmetry di ↔ −di is therefore induced by the invariance of our

system interchanging particles with anti-particles on the i-th brane.

If we expand the action (2.27) for small di,

S̃DBI = −TD7

∫

d8ξ

√
h3

4
ρ3f f̃(1 − χ2)

√

1 − χ2 + ρ2(∂ρχ)2

×
(

Nf +
8
∑Nf

i=1 d
2
i

(2πα′)2TD7ρ6f̃3(1 − χ2)3
+ · · ·

)

,

(2.29)

we observe an approximate O(Nf ) symmetry

(d1, . . . , dNf
) ↔ O(d1, . . . , dNf

) , O ∈ O(Nf ) . (2.30)

The approximate O(Nf ) symmetry, which consists of the SO(Nf ) group and reflections, is

the continuous symmetry generated by the discrete symmetries since the SO(Nf ) generators

are real skew-symmetric matrices which can be represented by reflection and permutation

matrices.

In the physical basis the effect of the symmetry transformation above is given by

• di ↔ dj :

for i, j 6 = 1 : dIi ↔ dIj

for i = 1, j 6= 1 : dB ↔ dB and dIj ↔ −
Nf∑

k=2

dIk ,
(2.31)

• di ↔ −di:

dIi ↔ −dIi + 2
∑

j 6=i

dj and dIj ↔ dIj − 2di j 6= i . (2.32)

For Nf = 2 we get

d1 ↔ d2 : dB 7→ dB and dI 7→ −dI

d1 ↔ −d1 : dB 7→ −dI and dI 7→ −dB

d2 ↔ −d2 : dB 7→ dI and dI 7→ dB .

(2.33)

These symmetries are also present in 2-color QCD theories with degenerated quark

mass [46]. Since the transformation matrix to the physical basis is proportional to an

O(2) matrix, there is also an induced approximate O(2) symmetry in the physical basis.

The results for the case Nf = 3 are shown in the appendix B.
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2.3.2 Gauge fields

We now determine the gauge fields which will allow us to compute the chemical potentials.

Therefore, we write down the asymptotic form of the gauge field close to the boundary,

AIi
0 = µIi − d̃Ii

2πα′
̺H

ρ2
+ · · · for i = 1, . . . , Nf , (2.34)

where the coefficients µIi and d̃Ii are related to the baryon/isospin chemical potential and

the baryon/isospin density nIi
q , respectively,

d̃Ii =
2

5

2nIi
q

NfNc

√
λT 3

. (2.35)

Obviously, the chemical potential µIi depends on the corresponding density d̃Ii . To deter-

mine, this dependence it is convenient to use the dimensionless quantities

X̃i =
2πα′

̺H
Xi , µ̃i =

2πα′

̺H
µi =

√

2

λ

µi

T
. (2.36)

As described above, the transformed action (2.27) may be used to calculate the gauge fields

and therefore the chemical potentials (see [27] for more details)

µ̃i = X̃i(ρ = ∞) = 2d̃i

∫ ∞

1
dρ

f
√

1 − χ2 + ̺2(∂ρχ)2
√

f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2
i ]
. (2.37)

The connection to the physical basis is given by

µ̃1 =

Nf∑

j=1

µ̃Ij , µ̃i =
∑

j 6=i

µ̃Ij − (Nf − 1)µ̃Ii i = 2, . . . , Nf , (2.38)

which for Nf = 2 becomes

µ̃B =
1

2
(µ̃1 + µ̃2) and µ̃I =

1

2
(µ̃1 − µ̃2) . (2.39)

Notice that in the Abelian case [27] it is found that in the limit m → ∞ the chemical

potentials µi approach Mq for positive d̃i. This allows us to calculate the physical chemical

potentials in the limit m→ ∞,

µB →Mq and µIi → 0 i = 2, . . . , Nf , (2.40)

if d̃j > 0 for j = 1, . . . , Nf . In the case d̃i < 0, using the accidental symmetry of the action

d̃i ↔ −d̃i presented in section 2.3.1, we get also a sign change in the chemical potential

µi ↔ −µi. Therefore, if we change the sign of just one d̃i, there is at least one isospin

chemical potential µ̃Ii which does not vanish any more. For Nf = 2 we explicitly get

µB →Mq and µI → 0 for d̃1, d̃2 > 0 i.e. 0 ≤ d̃I < d̃B

µB → 0 and µI →Mq for − d̃1 < d̃2 < 0 i.e. 0 ≤ d̃B < d̃I .
(2.41)
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If we set one density to zero in the case Nf = 2, e.g. d̃2 = 0, only the first brane is charged.

Therefore, the chemical potential µ1 approaches Mq and µ2 approaches zero in the limit

m → ∞. Using equation (2.39), this implies

µB → Mq

2
and µI → Mq

2
for d̃1 > 0, d̃2 = 0 i.e. 0 < d̃B = d̃I . (2.42)

This discontinuous step suggests that there is a phase transition between the regions 0 ≤
d̃I < d̃B and 0 ≤ d̃B < d̃I . We also expect a similar phase transition for arbitrary Nf . In

section 3.3 we discuss this phase transition further.

2.3.3 Embeddings

The equation of motion for the embedding function χ can be derived from (2.27) as

∂ρ



ρ5f f̃(1 − χ2)
∂ρχ

√

1 − χ2 + ρ2(∂ρχ)2

Nf∑

i=1

√

1 +
8d̃2

i

ρ6f̃3(1 − χ2)3





= − ρ3f f̃χ
√

1 − χ2 + ρ2(∂ρχ)2

[

[
3
(
1 − χ2

)
+ 2ρ2(∂ρχ)2

]
Nf∑

i=1

√

1 +
8d̃2

i

ρ6f̃3(1 − χ2)3

− 24

ρ6f̃3(1 − χ2)3

(
1 − χ2 + ρ2(∂ρχ)2

)
Nf∑

i=1

d̃2
i

√

1 +
8d̃2

i

ρ6f̃3(1−χ2)3

]

.

(2.43)

In addition to the case without isospin density [27], sums over the Nf different densities ap-

pear in the equation of motion for the embedding function. Due to these sums, the equation

of motion cannot be written down in a more compact form, as done in the Abelian case [27].

To relate the gravity field χ to the dual gauge field parameters we consider the asymp-

totic form for the embedding function χ close to the boundary,

χ =
m

ρ
+

c

ρ3
+ · · · . (2.44)

Then the AdS/CFT dictionary relates the coefficients m and c to the bare quark mass Mq

and the quark condensate 〈ψ̄ψ〉, respectively,

m =
2Mq√
λT

, c = − 8〈ψ̄ψ〉√
λNfNcT 3

. (2.45)

The initial conditions to solve equation of motion (2.43) numerically are χ(ρ = 1) = χ0

and ∂ρχ(ρ = 1) = 0. We determine the parameter m and c, which depend on χ0, by fitting

the numerical solution to the asymptotic form (2.44).

Examples for embeddings are shown in figure 1. In the case of vanishing particle

density we observe both black hole embeddings, ending on the black hole horizon, and

Minkowski embeddings [23]. The latter embeddings do not touch the horizon. For any

finite value of the particle density there are only black hole embeddings [27].
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L
(r

)

r

d̃ = 0

d̃ = 0.05

Figure 1: Embedding function L(r) of D7-branes in the AdS black hole background, with the

dimensionless coordinates L = ρ cos θ = ρχ and r = ρ sin θ = ρ
√

1 − χ2.

2.3.4 Strings from branes

In the case of pure finite baryon density [27] it was shown that D7-branes representing

heavy quarks develop a spike near the horizon, since they reach the horizon albeit their

large value of L at large r. This spike may be interpreted as a bundle of strings stretching

between the D7-branes and the black hole. This bundle of strings is necessary in the

presence of a non-vanishing gauge field on the brane. Since in our case we have a similar

setup, we expect to have this spike, too. To formalize this intuition, we analyze the near

horizon limit of the brane embedding in more detail as in [27]. We start by writing the

Legendre-transformed action as

S̃DBI = −TD7√
2

∫

d8ξ
f
√

f̃

√

1 +
̺2(∂̺χ)2

1 − χ2

Nf∑

i=1

√

d2
i

(2πα′)2TD7
+
̺6f̃3(1 − χ2)3

8
. (2.46)

Notice that χ = cos θ, which becomes χ ≃ 1 if the embedding is very near to the axis.

Therefore, the second term in the square roots can be neglected and we get

S̃DBI = −V3vol(S
3)

2πα′





Nf∑

i=1

di





∫

dtd̺
f
√

2f̃

√

1 +
̺2(∂̺χ)2

1 − χ2

= −V3vol(S
3)

2πα′





Nf∑

i=1

di





∫

dtd̺
√

−gtt(g̺̺ + gθθ(∂̺θ)2) , (2.47)

where V3 is the Minkowski space volume and vol(S3) the volume of the 3-sphere. Recognize

the fact that the result above can be written as the Nambu-Goto action for a bundle of

strings stretching in ̺ direction but free bending in the θ direction,

S̃DBI = −V3vol(S
3)





Nf∑

i=1

di



SNG . (2.48)
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Figure 2: The dimensionless mass parameter m as defined in equation (2.45) versus the horizon

value χ0 = limρ→1 χ of the embedding at baryon density d̃B = 0.5 for the case Nf = 2. The five

different curves correspond to isospin density d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue),

d̃I = 3

4
d̃B (red) and d̃I = d̃B (orange).
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(c)

Figure 3: The dimensionless chiral condensate c versus the mass parameter m as defined in

equation (2.45) at baryon density d̃B = 5 · 10−5 (a), d̃B = 0.5 (b) and d̃B = 20 (c) for the case

Nf = 2. The five different curves in each figure correspond to isospin density d̃I = 0 (black),

d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B (red) and d̃I = d̃B (orange).

Therefore just one of the densities di must be non-zero to make the branes develop a spike

close to the axis. This is the expected result. According to the discussion below equa-

tion (2.13) we consider a consistent case in which the Nf branes are coincident. Therefore

they have the same embedding function, such that the complete stack of Nf D7-branes

develops the spike discussed above.

2.4 Numerical results for the background fields

at constant baryon and isospin density

In this section we present numerical results for the background fields at constant densities,

which will later be used to determine the thermodynamics in the canonical ensemble. We

first analyze the embedding of the D7-branes. Figure 2 and 3 show the dependence of the

mass parameter m on the horizon value of the embedding function χ0 = limρ→1 χ and of

the chiral condensate c on the mass parameter m for the case Nf = 2 at different baryon

and isospin densities.

Figure 2 shows the same divergent behavior of the mass parameter as found in [27] for

the pure baryonic case. Figure 3 (a) shows that the low temperature black hole embeddings
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(d)

Figure 4: The baryon (left) and isospin (right) chemical potential divided by the bare quark mass

Mq versus the mass parameter m as defined in equation (2.45) at baron density d̃B = 5 ·10−5 in the

upper figures and d̃B = 0.5 in the lower ones for the case Nf = 2. The five different curves in each

figure correspond to isospin density d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B

(red) and d̃I = d̃B (orange).

for small but non-zero densities mimic the behavior of Minkowski embeddings which de-

scribe the brane at zero densities. For small densities there is a first order phase transition

between two black hole embeddings, which replaces the first order phase transition between

black hole and Minkowski embeddings at zero densities [23, 25]. Later in section 3.2 we

discuss that the phase transition between the two black hole embeddings must be replaced

by a phase transition between black hole embeddings and an inhomogeneous mixture of

black hole and Minkowski embeddings since the black hole embeddings alone are not the

stable ground state of this theory. At a baryon density larger than a critical density, which

value depends on the isospin density, the phase transition disappears and a local maximum

appears in the chiral condensate (see figure 3 (b)). This maximum disappears if we increase

the baryon or the isospin density and the chiral condensate c monotonically decreases as

we increase the mass m (see fig 3 (c)).

Figure 3 also shows that for finite densities, the chiral condensate c approaches a

fixed non-zero value in the limit m → ∞, i.e. T → 0. In figure 3 (a) this asymptotic

value is small due to the small baryon density but also non-zero as in figure 3 (b) and

(c). Since the non-zero chiral condensate breaks conformal invariance and supersymmetry,

these symmetries are always broken in our setup even in the limit T → 0, where the AdS
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black hole background becomes conformal and supersymmetric. This symmetry breaking is

induced by the finite densities and chemical potentials. The finite densities, which introduce

a new scale, break conformal invariance. The non-zero vev of just the time component of

the gauge field, which describes the chemical potential, breaks Lorentz invariance and

therefore supersymmetry.

Next we present the chemical potentials µB and µI in figure 4 for the case Nf = 2 at

different baryon and isospin densities. In the limit m→ ∞, the baryon chemical potential

µB approaches Mq and the isospin chemical potential µI approaches 0 (see figure 4 black,

green, blue and red line) for d̃B > d̃I ≥ 0 as shown in equation (2.41). For d̃B = d̃I (orange

line) the baryon and isospin chemical potential both approach Mq/2 in the large mass limit

as shown in equation (2.42). Moreover, figure 4 (c) and (d) show that the baryon chemical

potential is independent of the isospin density except for the discontinuous step at d̃B = d̃I

and the isospin chemical potential obviously depends on the isospin density. Figure 4 (a)

and (b) show that the phase transition is also visible in the chemical potential. For a baryon

density smaller than the critical density, the dimensionless quantities µB/I/Mq decrease as

we decrease the mass m and stays constant at a non-vanishing but small value after the

phase transition. For a baryon density larger than the critical density, the dimensionless

quantities µB/I/Mq diverge in the small mass limit m→ 0.

2.5 Numerical results for the background fields

at constant baryon and isospin chemical potential

In the calculations above we treated the densities d̃B and d̃Ii as a independent variables

since they are the constants of motion. Thermodynamically this means that we consider

the canonical ensemble. Since we also would like to study the grand canonical ensemble

with the chemical potentials µ̃B and µ̃Ii as independent variables, we must analyze the

background fields for constant chemical potentials µ̃B and µ̃Ii . To determine the densities

d̃i for a given chemical potential µ̃i we must invert equation (2.37). We use a shooting

method to obtain these functions d̃i(µ̃i,m).5

So far we considered only the case with non-zero densities. We now investigate the

case with zero densities but still non-zero chemical potentials. As shown in [51], in this

case Minkowski embeddings must also be included. Since the action only depends on the

derivative of the gauge field, a Minkowski embedding with constant gauge field solves the

equation of motion. Therefore, on these Minkowski embeddings the chemical potential can

take any value. The equation of motion for the Minkowski embedding L is given by [25]

∂r

[

r3
(

1 − 1

(r2 + L2)4

)
∂rL

√

1 + (∂rL)2

]

− 8
r3L

(r2 + L2)5

√

1 + (∂rL)2 = 0 , (2.49)

where L and r are dimensionless and given by ρ2 = r2 + L2, r = ρ sin θ = ρ
√

1 − χ2 and

L = ρ cos θ = ρχ. From now on we only use these dimensionless coordinates L and r. The

5For the exit condition of the shooting method we use that the deviation from a given chemical potential

µ̃g
i to a chemical potential µ̃c

i (d̃i) calculated numerically by (2.37) for a chosen d̃i is at most 0.5%.
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Figure 5: The dimensionless mass parameter m as defined in equation (2.45) versus the horizon

value of the black hole embeddings χ0 = limρ→1 χ between 0 to 1 and the asymptotic value of the

Minkowski embeddings L0 = limr→0 L between 1 and 2 at baryon chemical potential µB/Mq = 0.01

(a), µB/Mq = 0.1 (b) and µB/Mq = 0.8 (c) for the case Nf = 2. The dotted purple curve

corresponds to Minkowski embeddings and the five other curves to black hole embeddings with

isospin chemical potential µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue), µI = 3

4
µB (red)

and µI = µB (orange).

asymptotic solution for the embedding function L close to the boundary is,

L = m+
c

r2
+ · · · . (2.50)

The parameters m and c are related to the quark mass Mq and the chiral condensate 〈ψ̄ψ〉
given by equation (2.45). Using the initial conditions L(r = 0) = L0 and ∂rL(r = 0) = 0,

we may solve the equation of motion (2.49) numerically. The parameters m and c may be

determined by fitting the numerical solutions to the asymptotic form (2.50).

In figure 5, 6, 7 and 8 we show numerical results for the background fields at constant

chemical potential. Figure 5 shows the mass parameter m versus the horizon value of the

black hole embeddings χ0 between 0 and 1 and the asymptotic value of the Minkowski em-

beddings L0 between 1 and 2 at different baryon and isospin chemical potentials. In these

figures we see that there is a region where the Minkowski and the black hole embeddings

generate the same mass parameter m. We will show in section 4.2 that in this overlap there

is a first order phase transition as in the case of zero chemical potential [23, 25]. For small

chemical potentials (see figure 5 (a)), the mass parameter decreases in the black hole phase

for χ0 → 1 as known from [23, 25]. However, for larger chemical potentials (see figure 5 (b)),

the mass parameter m increases monotonically as we increase χ0. In both cases, figure 5 (a)

and (b) demonstrate that the mass parameter depends linearly on the the asymptotic values

χ0 and L0 in a large region. The only non-linear behavior is in the region where both em-

beddings can be constructed. For chemical potentials (µB +µI)/Mq > 1 (figure 5 (c)), the

mass parameter diverges as χ0 → 1 as in the case of constant densities. This corresponds to

the fact that in the canonical ensemble, there are black hole embeddings for all mass param-

eters m. In the grand canonical ensemble, however, there are also Minkowski embeddings.

Figure 6 shows the chiral condensate c versus the mass parameter m at different baryon

and isospin chemical potentials. For small chemical potentials (figure 6 (a) and (b)), we

see a similar behavior as in the case of zero chemical potentials [23, 25]. By increasing the

chemical potentials, the spiral behavior of the chiral condensate vanishes since the mass

parameter increases monotonically as we increase χ0. However, there is still a region where
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Figure 6: The dimensionless chiral condensate c versus the mass parameter m as defined in

equation (2.45) at baryon chemical potential µB/Mq = 0.01 (a), µB/Mq = 0.1 (b) and µB/Mq = 0.8

(c) for the case Nf = 2. The dotted purple curve corresponds to Minkowski embeddings and the

five other curves to black hole embeddings with isospin chemical potential µI = 0 (black), µI = 1

4
µB

(green), µI = 1
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µB (blue), µI = 3
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µB (red) and µI = µB (orange).
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Figure 7: The dimensionless baryon density d̃B versus the mass parameter m as defined in equa-

tion (2.45) at baryon chemical potential µB/Mq = 0.01 (a), µB/Mq = 0.1 (b) and µB/Mq = 0.8 (c)

for the case Nf = 2. The five different curves correspond to black hole embeddings with isospin

chemical potential µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue), µI = 3

4
µB (red) and

µI = µB (orange). In the Minkowski phase, the baryon density is always zero and is therefore not

shown in the figures.
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Figure 8: The dimensionless isospin density d̃I versus the mass parameter m as defined in equa-

tion (2.45) at baryon chemical potential µB/Mq = 0.01 (a), µB/Mq = 0.1 (b) and µB/Mq = 0.8 (c)

for the case Nf = 2. The five different curves correspond to black hole embeddings with isospin

chemical potential µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue), µI = 3

4
µB (red) and

µI = µB (orange). In the Minkowski phase, the isospin density is always zero and is therefore not

shown in the figures. For a zero isospin chemical potential µI = 0, the isospin density d̃I is also

zero and therefore coincides with the m-axis.

the chiral condensate is multivalued since there are black hole and Minkowski embeddings

which generate the same mass m. For large chemical potentials (µB +µI)/Mq > 1 (figure 6
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(c)), the chiral condensate diverges as we increase m. Since for smaller chemical potentials

(µB + µI)/Mq < 1 the chiral condensate in the black hole phase approaches the value for

Minkowski embeddings at a finite mass m, the divergent behavior of the chiral condensate

for large chemical potentials (µB + µI)/Mq > 1 indicates that there is no phase transition

between black hole and Minkowski embeddings anymore.

Figure 7 and 8 show the baryon and isospin density versus the mass parameter m

calculated by the inversion of equation (2.37) at different baryon and isospin chemical

potentials. These figures show that for all chemical potentials µB/I , the baryon and the

isospin density are zero at zero mass m = 0. For small chemical potential, figure 7 (a),

(b) and 8 (a), (b) show that the densities increase until they reach a maximum at m ∼ 1.

Beyond the maximum the densities decreases rapidly, but they do not reach to zero at the

largest m which can be constructed by black hole embeddings. Therefore, there is also a

discontinuous step in the densities as in the chiral condensate at the transition from black

hole embeddings to Minkowski embeddings. For large chemical potentials (µB+µI)/Mq > 1

(figure 7 (c) and 8 (c)), the densities diverge as we increase m, as does the chiral condensate.

3. Canonical D7-brane thermodynamics

3.1 The canonical ensemble:

free energy, entropy, energy and speed of sound

In this section we study the thermodynamic behavior of the quark sector at finite baryon

and isospin density which is dual to thermal contributions of the D7-branes. Since the

partition function Z of the field theory is given according the AdS/CFT dictionary by

Z = e−Son-shell , (3.1)

with the Euclidean on-shell supergravity action Son-shell, the thermodynamical potential, in

the canonical ensemble the free energy F , is proportional to the Euclidean on-shell action

F = −T lnZ = TSon-shell . (3.2)

To calculate the thermal contributions of the D7-branes F7, we have to determine the

Euclidean DBI action (2.23) on-shell.

First we perform a Wick rotation in the time direction to obtain the Euclidean DBI-

action.6 Next we must renormalize this action by adding the appropriate counterterms Ict
(see [52] for a review) since it diverges on-shell. Since these counterterms do not depend

on the finite densities, we can write them as in [25, 27],

Ict = −Nλ

4

[(
ρ2
max −m2

)2 − 4mc
]

, (3.3)

where ρmax is the UV-cutoff and

Nλ =
TD7V3vol(S

3)Nf̺
4
H

4T
=
λNcNfV3T

3

32
, (3.4)

6The Euclidean time must be periodic with period β = 1/T , such that the geometry is non-singular.
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whit the Minkowski space volume V3. Then the renormalized Euclidean on-shell action IR
may simply be written as

IR
Nλ

=
1

Nf
G(m, µ̃) − 1

4

[(
ρ2
min −m2

)2 − 4mc
]

, (3.5)

where ρmin determines the minimal value of the coordinate ρ on the D7-branes, i.e. ρmin = 1

for black hole embeddings and ρmin = L0 for Minkowski embeddings and

G(m, µ̃) =

∫ ∞

ρmin

dρ

(

ρ3f f̃
(
1 − χ2

)

×
Nf∑

i=1

√

1 − χ2 + ρ2(∂ρχ)2 − 2
f̃

f2
(1 − χ2)(∂ρX̃i)2

−Nf

(
ρ3 − ρm2

)

)

.

(3.6)

Since this action depends on the background fields χ and Xi and therefore on the mass

parameter m and the chemical potential µi, it is proportional to the grand potential in

the grand canonical ensemble. To get the free energy in the canonical ensemble, we must

perform a Legendre transformation of the on-shell action IR as we did in equation (2.27).

The Legendre transformed on-shell action ĨR is given by

ĨR
Nλ

=
1

Nf
G̃(m, d̃) − 1

4

[(
ρ2
min −m2

)2 − 4mc
]

, (3.7)

where

G̃(m, d̃) =

∫ ∞

ρmin

dρ

(

ρ3f f̃
(
1 − χ2

)
√

1 − χ2 + ρ2(∂ρχ)2

×
Nf∑

i=1

√

1 +
8d̃2

i

ρ6f̃3(1 − χ2)3
−Nf

(
ρ3 − ρm2

)

)

.

(3.8)

In the following we use this action to calculate the main thermodynamical quantities. The

difference to the results obtained in [27] is induced by the sum over theNf different densities

in equation (3.8).

3.1.1 The free energy

The contribution of the D7-branes to the Helmholtz free energy is

F7 = T ĨR =
λNcNfV3T

4

32
F7(m, d̃) (3.9)

with the dimensionless quantity

F7(m, d̃) =
ĨR
Nλ

=
1

Nf
G̃(m, d̃) − 1

4
{(ρ2

min −m2)2 − 4mc} . (3.10)
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The dimensionless quantity F7 determines the dependence of the free energy F of the

complete setup on the quark mass Mq and the quark densities nq at a fixed temperature T .

Using the example of the free energy we study how a thermodynamic quantity of the

complete setup is composed of the quantities of the subsystems. The parts from the D3-

branes F3, which is the known quantity for the conformal N = 4 SYM theory, and from

D7-branes F7 form the free energy of the complete setup

F = F3 + F7 = −π
2

8
N2

c V3T
4 +

λNcNfV3T
4

32
F7(m, d̃)

= −π
2

8
N2

c V3T
4

(

1 − λNf

4π2Nc
F7(m, d̃)

)

.

(3.11)

Here we only get the first order contribution inNf/Nc since we work in the probe brane limit

Nf ≪ Nc. In the following we define quantities similar to F7 for the other thermodynamic

quantities and denote them also with a calligraphic letter. Note that these thermal contri-

butions of the D7-branes vanish in the limit where supersymmetry and conformal invariance

is restored. This limit is given by zero densities and large mass parameters m→ ∞.

3.1.2 The entropy

As in [25, 27], the contribution to the entropy by the D7-branes is given by

S7 = −∂F7

∂T
= −πR2 ∂F7

∂̺H
=
λNcNfV3T

3

32
S7(m, d̃) , (3.12)

with the mass and density dependent part

S7(m, d̃) = −4F7(m, d̃) +
12

Nf

Nf∑

i=1

d̃iµ̃i − 2mc . (3.13)

In comparison to the case without isospin density [27], there is sum over the Nf different

densities.

3.1.3 The energy

Using the thermodynamic relation E = F + TS, we calculate the energy

E7 =
λNcNfV3T

4

32
E7(m, d̃) , (3.14)

with the dimensionless quantity

E7(m, d̃) = −3F7(m, d̃) +
12

Nf

Nf∑

i=1

d̃iµ̃i − 2mc . (3.15)

Again a sum over the Nf densities appears in the equation above, which is due to the finite

isospin densities.
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3.1.4 The speed of sound

The speed of sound is given by

v2
s =

V3∂P

∂E
= −∂(Ω3 + Ω7)

∂T
· ∂T

∂(E3 + E7)
, (3.16)

where the pressure P is given by PV3 = −Ω = −(Ω3 + Ω7). Ω and E are the grand

potential and energy of the complete system. Ω3 and E3 are the contribution to the grand

potential and energy of the D3-branes, respectively. Using the thermodynamic relations

S = −
(

∂F
∂T

)

V,N
= −

(
∂Ω
∂T

)

V,µ
and cv =

(
∂E
∂T

)

V,N
, we may rewrite the speed of sound in the

canonical ensemble

v2
s =

S3 + S7

cv3 + cv7
. (3.17)

Using equation (3.15) the specific heat cv7 becomes

cv7 = 3S7 −
3λNcNfV3T

3

16



mc− 1

3
m2 ∂c

∂m
+

2

Nf

Nf∑

i=1

d̃i

(

m
∂µ̃i

∂m
− 4µ̃i

)


 , (3.18)

where we used ∂T = −m
T ∂m (see equation (2.45)). With the contributions of the D3-branes

given by the thermodynamics of the conformal N = 4 SYM theory,

S3 =
π2

2
V3N

2
c T

3 and cv3 = 3S3 , (3.19)

we evaluate the speed of sound to first order in Nf/Nc

v2
s =

1

3

[

1 +
λNf

8π2Nc
V2

s (m, d̃)

]

, (3.20)

with

V2
s (m, d̃) = mc− 1

3
m2 ∂c

∂m
+

2

Nf

Nf∑

i=1

d̃i

(

m
∂µ̃i

∂m
− 4µ̃i

)

. (3.21)

Notice that the first order correction in Nf/Nc is consistent with the approximation of

probe branes (cf. with equation (3.11)). The last term reflects the presence of the finite

baryon and isospin density. The dependence on the mass parameter m and the chiral

condensate c is given by the result without densities [25].

3.1.5 Numerical results for the free energy, entropy, energy and the speed of

sound

In figure 9, 10, 11 and 12 we present numerical results for the mass and density dependent

part of the thermodynamic quantities at different baryon and isospin densities for Nf = 2.

Figure 9 shows the free energy F7 versus the mass parameter m at different densities

as calculated from equation (3.10). For small densities (see figure 9 (a)) we see again that

the low temperature black hole embeddings have the same free energy as the zero-density

Minkowski embeddings. Since the free energy determines the thermodynamics entirely,

the same effect is also seen in the other thermodynamic quantities and we therefore do not

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

0 1 2 3 4
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

m

F7

(a)

0 1 2 3 4 5
0

2

4

6

8

10

12

m

F7

(b)

Figure 9: The dimensionless free energy F7 versus the mass parameter m as defined in equa-

tion (2.45) at baryon density d̃B = 5 · 10−5 (left) and d̃B = 2 (right) for the case Nf = 2. The five

different curves in each figure correspond to d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue),

d̃I = 3

4
d̃B (red) and d̃I = d̃B (orange).
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Figure 10: The dimensionless entropy S7 versus the mass parameterm as defined in equation (2.45)

at baryon density d̃B = 0.5 (left) and d̃B = 2 (right) for the case Nf = 2. The five different curves

in each figure correspond to d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B (red)

and d̃I = d̃B (orange).

consider them at small densities. For larger densities (see figure 9 (b)) we see a displacement

due to the isospin densities, which is constant over a wide range. Moreover, the free energy

behaves linearly for m & 2. The increase of the free energy as m → ∞ demonstrates

the deviation from the conformal N = 4 thermodynamics which was discussed below

equation (3.11). For small m, i.e. small quark masses compared to the temperature Mq ≪
T , we see deviations from the linear behavior due to thermal fluctuations which increase

the free energy.

In figure 10 the entropy S7 versus the mass parameter m as calculated from equa-

tion (3.13) is shown. Again a displacement due to the isospin densities appear. However,

the displacement in the entropy becomes smaller as we increase m and the entropy ap-

proaches a non-zero value independent of the isospin density as m → ∞. Moreover if the

baryon density is above its critical value, a minimum in the entropy appears for zero isospin

density. By increasing the isospin density this minimum disappears slowly.
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Figure 11: The dimensionless energy E7 versus the mass parameter m as defined in equation (2.45)

at baryon density d̃B = 0.5 (left) and d̃B = 2 (right) for the case Nf = 2. The five different curves

in each figure correspond to d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B (red)

and d̃I = d̃B (orange).
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Figure 12: The dimensionless speed of sound relative to the conformal case V2
s versus the mass

parameter m as defined in equation (2.45) at baryon density d̃B = 5 · 10−5 (a), d̃B = 0.5 (b) and

d̃B = 2 (c) for the case Nf = 2. The five different curves in each figure correspond to d̃I = 0

(black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B (red) and d̃I = d̃B (orange).

The energy E7 shown in figure 11 as calculated from equation (3.15) shows a very

similar behavior as the free energy, discussed above. However, a minimum appears in

the energy at m ≈ 1.3 for a baryon density above the critical density (see figure 11 (a)).

Increasing the baryon densities (see figure 11 (b)), this minimum disappears.

Figure 12 shows the speed of sound V2
s calculated from equation (3.21). Again a

displacement due to the isospin densities appear. In the speed of sound this displacement

grow as we increase m. For a baryon density above the critical density and zero isospin

density, the speed of sound is constant at m ≈ 1.3 as shown in figure 12 (b). Increasing

the baryon or isospin density the speed of sound monotonously decreases as m increases

(figure 12 (b) and (c)).

3.1.6 Interpretation: Quark mass selection and temperature change

Here we discuss the effect of a non-zero isospin density on the quark mass Mq. We argue

that under certain conditions explained below, the thermodynamic quantities given in the

previous section 3.1.5 select preferred values M∗
q for the mass Mq of the quarks inside the
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quark gluon plasma. In a slightly different setup we find that our system prefers a distinct

temperature T = T ∗.

In our model the quark mass Mq is a free parameter. We fix the temperature T

and charge densities ni and keep the volume V of our system constant. The canonical

ensemble describes this situation with the free energy being the relevant thermodynamic

potential. We argue how the quark mass Mq as a free parameter has to be selected in order

to satisfy the second law of thermodynamics. In fact we will find a competing behavior

between entropy and energy requirements. The second law of thermodynamics implies

that in thermal equilibrium, the entropy is maximized at fixed thermodynamic potential.

This is equivalent to minimzing the thermodynamic potential at a fixed entropy [53]. In

our case this potential is the free energy. However, competing situations between entropy

and energy requirements are well known from frustrated systems, e.g. polymers or anti-

ferromagnets on a triangle lattice, as well as glass states, e.g. spin glass [54]. In these

systems the temperature is usually the thermodynamic variable which adjusts at a distinct

value where the criteria are optimally satisfied. In our setup we have the quark mass Mq

as a free parameter, which in analogy to the case discussed above adjusts at a specific

value M∗
q . In order to find this optimal value M∗

q , we examine figures 9 and 10. Recall

from equations (2.45) and (2.35) that the mass parameter m is related to the temperature

and quark mass by m = 2Mq/(
√
λT ) and ni ∝ d̃i. We observe that in the region m & 4

for all densities, the free energy decreases at a constant entropy as the quark mass Mq

is increased. At smaller values of the mass parameter m . 4, the entropy changes as we

vary the quark mass Mq. The second law of thermodynamics forbids the system to be in

equilibrium. From these considerations and from looking at figures 9 and 10 we conclude

that the quark mass has to take a value of 0 ≤ M∗
q ≤

√
λTm/2, such that 0 ≤ m ≤ 4.

Since in this regime the entropy and free energy both vary when the densities are changed,

we expect the value of Mq to depend on the densities ni, i.e. Mq = M∗
q (ni). Therefore, our

system with the quark mass as a free parameter shows similar properties as the frustrated

systems discussed above.

It is amusing to apply the results of this analysis to the quark gluon plasma formed after

the big bang. This would imply that our universe could have evolved in such a way that the

quark mass was chosen such that it optimizes the free energy and entropy requirements.

Note that during this mass selection process we have to stay in a regime where the metric

does not change considerably in order for this system to be approximately closed [53].

Now we consider a different scenario, by which a distinct temperature T ∗ is favored.

We work in the microcanonic ensemble by fixing the entropy instead of temperature. An

example of such a situation is the collision of heavy ions in vacuum. Since the natural

temperature variable for our system is the temperature T measured in units of the quark

mass Mq, we let m change freely. In this case the quark mass Mq is fixed and the volume

of plasma evolves to a preferred value of temperature T , in a reversible thermodynamic

process. The system seeks to minimize its internal energy E7 while its entropy S7 is fixed by

definition. In this setup the plasma relaxes isentropically to a favored temperature T = T ∗.

– 25 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

1.296 1.298 1.300 1.302 1.304 1.306 1.308 1.310
-0.033

-0.032

-0.031

-0.030

-0.029

m

F7

(a)

1.29 1.30 1.31 1.32

-2.0

-1.5

-1.0

-0.5

mV2
s

(b)

1.295 1.300 1.305 1.310 1.315 1.320

-0.11

-0.10

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04 mc

(c)

1.29 1.30 1.31 1.32 1.33 1.34

0.000

0.005

0.010

0.015

0.020

0.025

0.030 m
µB/Mq

(d)

1.29 1.30 1.31 1.32 1.33 1.34

0.000

0.005

0.010

0.015

0.020

0.025

0.030 m
µI/Mq

(e)

Figure 13: (a) The dimensionless free energy F7, (b) the speed of sound V2
s , (c) the chiral con-

densate c, (d) the baryon chemical potential µB/Mq and (e) the isospin chemical potential µI/Mq

versus the mass parameter m as defined in equation (2.45) near the phase transition at the baryon

density d̃B = 5 · 10−5 for Nf = 2. The resolution of the figures is not high enough to dissolve the

curves at different isospin density d̃I = 0, 1

4
d̃B , 1

2
d̃B, 3

4
d̃B, d̃B. The dashed line at m = 1.306 marks

the phase transition.

3.2 Phase transition/phase diagram in the canonical ensemble

In the pure baryonic case [27] it was shown that there is a first order phase transition

between two black hole embeddings for densities below the critical density d̃B
crit = 0.0063.7

In this section we analyze how the isospin density influences this phase transition. In

figure 13 we give an example of the behavior of the free energy, the speed of sound, the

chiral condensate, the baryon and the isospin chemical potential µB/I/Mq close to the

phase transition. The free energy, the speed of sound and the chiral condensate behave as

in the pure baryonic case [27]. The isospin chemical potential µI/Mq takes different values

depending on the isospin density after the phase transition (see figure 13 (e)). The baryon

chemical potential (figure 13 (d)) instead is almost independent of the isospin density.

However, the behavior of both chemical potentials changes dramatically if the baryon and

isospin densities are equal in agreement with equation (2.42).

Figure 13 shows that the phase transition is first order since the free energy is con-

tinuous and the speed of sound, the chiral condensate and the chemical potentials show a

multivalued behavior and therefore a discontinuous step at the phase transition. The phase

transition is marked by the crossing point in the free energy of the two branches coming

in from small m and large m (see figure 13 (a)).

In figure 14 (a) we map out the phase diagram by varying the densities and determining

the crossing point in the free energy. As outlined in section 2.3.1, the phase diagram is

approximately O(2) invariant. We find a line of critical points, which mark the critical

7Note that the normalization we use in this paper (2.28) differ to the normalization used in [27] by Nf .
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Figure 14: (a) The phase diagram in the canonical ensemble forNf = 2: The cusp marks the phase

transition for d̃B = d̃I = 0 and the upper rim the critical points. Notice that the phase diagram

is approximately O(2) invariant in agreement with the symmetries discussed in section 2.3.1. (b)

Position of the critical points: Comparison of the position of the critical points (cross) with the

O(2) invariant circle (blue) and a superellipse (d̃I)a = (d̃B
crit

)a − (d̃B)a with a = 2.08 (dashed). The

difference of the parameter a from 2 determines the deviation from the O(2) symmetry.

mass parameter mcrit and critical densities d̃B
crit, d̃

I
crit. For densities around the critical

points, we expect the largest deviation to the O(2) symmetry in the phase diagram (see

equation (2.30)). To get a quantitative description of this deviation, we plot the critical

points and compare them to the O(2) invariant circle and the superellipse (d̃I)a = (d̃B
crit)

a−
(d̃B)a with a = 2.08 in figure 14 (b). The deviation a−2 = 0.08 is still small at the critical

points. Thus, the complete phase boundary in the canonical ensemble is O(2) invariant in

a good approximation.

More advanced thermodynamical investigations of the pure baryonic case [27, 28] show

that there is a region were the black hole embeddings are not a stable ground state for

this theory. The points where the phase transition between the two black hole embeddings

occurs is at the boundary of this unstable region. In [28] the authors expect that in this

region an inhomogeneous mixture of black hole and Minkowski embeddings is the stable

ground state. Therefore the phase transition is not between two black hole embeddings,

but between a black hole embedding and this inhomogeneous mixture. The existence of

a mixed phase is typical for a first order phase transition and can e.g. be observed in

boiling water. The water does not instantly turn into gas but forms droplets consisting of

a mixture of water and water vapor.

3.3 Canonical thermodynamics in the large quark mass limit

In the large mass limit m → ∞, i.e. Mq ≫ T , the dimensionless thermodynamic quanti-

ties and the chiral condensate vanish if the baryon and isospin densities are zero because
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Figure 15: (a) The baryon chemical potential µB/Mq, (b) the isospin chemical potential µI/Mq,

(c) the chiral condensate c and (d) the free energy F7 versus the baryon and isospin density at

m = 20, where the mass parameter m is defined in equation (2.45), in the case Nf = 2. (c) and (d)

are contour plots of the chiral condensate and the free energy, respectively.

supersymmetry and conformal symmetry are restored and therefore the thermodynamics

are given by the results of the stack of D3-branes dual to the conformal N = 4 SYM

theory [25]. Introducing finite baryon and isospin densities break these symmetries even

though the AdS black hole background becomes symmetric and we get deviations in the

thermodynamic quantities from the conformal results (see e.g. figure 9). In the following

we investigate the dependence of these deviations on the densities d̃Ii further.

3.3.1 Numerical results

First we discuss the numerical results for the thermodynamic quantities, the chemical

potentials and the chiral condensate at a fixed mass m = 20 in dependence of the baryon

and isospin density for Nf = 2, presented in figure 15. We restrict our analysis to non-

negative baryon and isospin densities d̃B , d̃I ≥ 0. The results may be continued into

the other three quadrants by the accidental symmetries, discussed in section 2.3.1.The

discontinuous step in the chemical potentials along the line d̃I = d̃B ≥ 0 described in (2.41)
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Figure 16: The phase diagram for m → ∞, i.e. Mq ≫ T : The dashed lines marks the phase

transitions where the chemical potentials develop a discontinuous gap. Notice that the dashed lines

are the fixed points of the symmetries d̃1 ↔ −d̃1, d̃2 ↔ −d̃2.

and (2.42) are shown in figure 15 (a) and (b). We can easily characterize this behavior in

the large mass limit m→ ∞ by

µB

Mq
→ H(d̃B − d̃I) and

µI

Mq
→ H(d̃I − d̃B) , (3.22)

where H is the Heaviside function. This discontinuity suggests that there is a first order

phase transition between the two regions 0 ≤ d̃I < d̃B and 0 ≤ d̃B < d̃I . At the same line

the chiral condensate and the thermodynamic quantities develop a kink (see figure 15),

which also indicates that there is a phase boundary along the line d̃B = d̃I ≥ 0. Using the

accidental symmetries discussed in section 2.3.1, we give an overview of the four different

phases and the values of the chemical potentials in the corresponding region in figure 16.

The same four different phases are also seen in QCD-like theories studied in [46]. Since

in [46] the authors study the grand canonical ensemble, the phase transition is marked by

a discontinuous step in the baryon and isospin density and phase boundaries are given by

|µB | = |µI |. Along these phase boundaries the chiral condensate develops a similar kink

as we observe here.

From the contour plot in figure 15 (c), we see that the chiral condensate is independent

of the isospin density for large masses in the region 0 ≤ d̃I < d̃B since the contour lines are

parallel to the lines of constant baryon density in the region 0 ≤ d̃I < d̃B . To investigate

the region 0 ≤ d̃B < d̃I , we can simply interchange the baryon and isospin density by

the accidental symmetries discussed in section 2.3.1. Therefore, the chiral condensate only

depends on the isospin density in the region 0 ≤ d̃B < d̃I . Figure 3 shows that the chiral

condensate is also independent of the mass parameter m since it approaches a constant
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value as m→ ∞. Approximately, the dependence of the chiral condensate is given by

c→







− d̃B√
2

for 0 ≤ d̃I < d̃B

− d̃I√
2

for 0 ≤ d̃B < d̃I
as m → ∞ . (3.23)

Next we analyze the thermodynamic quantities and start with the free energy. The contour

plot of the free energy in figure 15 (d) directly shows a dependence on the isospin and the

baryon density in both regions 0 ≤ d̃I < d̃B and 0 ≤ d̃B < d̃I . In the region 0 ≤ d̃I < d̃B ,

the dependence appears to be linear on the baryon density but nonlinear on the isospin

density. Figure 9 shows also a linear dependence of the free energy on the mass parameter

m in the large mass limit. In order collect this behavior in a formula, we make a suitable

ansatz and fit to the numerical data

F7 ∼







√
2md̃B − 2d̃B + 0.6 (d̃I )2.25

(d̃B)0.9
for 0 ≤ d̃I < d̃B

√
2md̃I − 2d̃I + 0.6 (d̃B )2.25

(d̃I )0.9
for 0 ≤ d̃B < d̃I

as m→ ∞ . (3.24)

Similarly we write for the energy

E7 ∼







√
2md̃B + 0.6 (d̃I )2.25

(d̃B)0.9
for 0 ≤ d̃I < d̃B

√
2md̃I + 0.6 (d̃B)2.25

(d̃I )0.9
for 0 ≤ d̃B < d̃I

as m→ ∞ . (3.25)

The entropy behaves similarly as the chiral condensate and we therefore may approximate

it with

S7 →
{

2d̃B for 0 ≤ d̃I < d̃B

2d̃I for 0 ≤ d̃B < d̃I
as m→ ∞ . (3.26)

In the following we interpret the large mass limit of the chiral condensate, the free energy,

the energy and the entropy found in (3.24)–(3.26).

3.3.2 Interpretation of the numerical results

For the interpretation of the results found in (3.24)–(3.26), the difference of the two regions

0 ≤ d̃I < d̃B and 0 ≤ d̃B < d̃I as displayed in figure 15 is essential. First we show that in

both regions the larger density is a measure for the degrees of freedom. For this purpose,

we map our theory to a QCD-like theory. In our setup the open D3-D7 strings model

quarks8 of a QCD-like theory [22]. For Nf = 2 we consider two different quarks, e.g. u and

d quarks. We assign a baryon charge qB and isospin charge qI to these quarks,

u = |qB , qI〉 = |1, 1〉 , d = |1,−1〉 . (3.27)

8Strictly speaking the D3-D7 strings model a SUSY multiplet consisting of quarks and squarks.
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The effect of the symmetries (2.33) on these charges is given by

d1 ↔ d2 :

u = |1, 1〉 7→ |1,−1〉 = d and d = |1,−1〉 7→ |1, 1〉 = u

d1 ↔− d1 :

u = |1, 1〉 7→ | − 1,−1〉 = ū and d = |1,−1〉 7→ |1,−1〉 = d

d2 ↔− d2 :

u = |1, 1〉 7→ |1, 1〉 = u and d = |1,−1〉 7→ | − 1, 1〉 = d̄ ,

(3.28)

where we defined the anti-quarks ū and d̄ consistently with the ideas given in section 2.3.1

and the convention used in QCD-like theories.9 Using the charges of the quarks we may

assign a baryon charge to the plasma by

qB
plasma = nu + nd − nū − nd̄ , (3.29)

and the isospin charge by

qI
plasma = nu + nd̄ − nū − nd , (3.30)

where ni counts the different quarks in the plasma. A plasma with 0 ≤ qI
plasma < qB

plasma, i.e.

0 ≤ d̃I < d̃B , may be constructed using u and d quarks only. Experimentally such a plasma

can be produced by heavy ion collisions. However, for a plasma with 0 ≤ qB
plasma < qI

plasma,

i.e. 0 ≤ d̃B < d̃I , we must consider the free quarks u and anti-quarks d̄. Therefore for

positive densities, the larger one of the two quantities qB
plasma and qI

plasma counts the degrees

of freedom of the plasma consisting of the free quarks and anti-quarks. This explains the

difference in the two regions displayed in figure 15.

First we consider the entropy S7 given in equation (3.26). The entropy measures the

logarithm of the number of states the plasma could be in. The degrees of freedom increase

these number of states by their phase space volume. Since the larger density determines

the degrees of freedom, it is clear that the entropy increases linearly with the larger density.

Next we consider the free energy and the energy found in (3.24) and (3.25). Since the

degrees of freedom contribute to the free energy (energy) by their rest mass, a term appears

which is proportional to d̃Bm and d̃Im. In the free energy (energy) there is also a nonlinear

dependence on the smaller density, (d̃I)2.25/(d̃B)0.9 and (d̃B)2.25/(d̃I)0.9, respectively. We

expect that this contribution is due to a charge of the plasma which is induced by the non-

Abelian charges of the quarks and measured by the smaller density. This charge is similar

to an electrostatic charge in the sense that the free energy (energy) increases as we increase

the amount of the charge of the plasma. The deviation in the exponent of (d̃I/B)2.25 from

the naively expected Coulomb behavior (d̃I/B)2 is probably due to non-perturbative effects

of vacuum polarisations since the gauge coupling is large.10 The fact that there is a term

depending on the larger density (d̃B)−0.9 may be due to a screening of the plasma charge

by the quarks and anti-quarks.

9Recall that the pion π+ = ud̄ = |0, 2〉 (π− = dū = |0,−2〉) has positive (negative) isospin charge in

QCD. Notice that the normalization of our charges is not the same as in QCD.
10In QED, where the coupling constant is small, the perturbative corrections due to vacuum polarisations

are sometimes called Uehling effect [55].
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3.3.3 Expected behavior of the system perturbed by interactions

which break baryon and isospin conservation

In this section we study the possible behavior of our system if the baryon and isospin

density are not conserved. Interactions which break baryon (isospin) conservation are e.g.

included in the MSSM (electroweak theory). We are not able to include such interactions

explicitly in our setup. However, we may analyze the modification in the plasma induced

by variation of the density using the thermodynamic results found in (3.24) to (3.26). The

variation in the plasma must be such that the free energy becomes minimal at a fixed

entropy (see section 3.1.6). We discuss the reaction of our system separately for the four

different regions in the phase diagram shown in figure 16.

Experimentally the region d̃B > |d̃I | may be observed by heavy ion collisions. In this re-

gion we learn from equation (3.26) that the entropy is independent of the isospin density but

proportional to the baryon density. Therefore, at constant entropy the baryon density must

be constant, too. Only the isospin density may change. For constant baryon density the

minimum of the free energy is located at zero isospin density, see figure 15 (d). Thus, we ex-

pect our system, perturbed by weak interactions, to decrease the amount of isospin density

to zero. This effect is well known in nuclear physics. The nuclei stable with respect to β-

decay consists of the same number of protons and neutrons.11 As is well known the β-decay

is induced by electroweak interactions, which we consider here to change the isospin density.

The region d̃B < −|d̃I | is similar to the region discussed above since they are connected

by the symmetry d̃B ↔ −d̃B which interchanges particles with anti-particles. Thus, this

region determines the physics in a situation where anti-particles dominate. In this region

we also expect that the system approaches a state of zero isospin density. For the example

of nuclear physics this means that nuclei are also stable under β decay if they consist of

the same number of anti-protons and anti-neutrons.

In the other two regions the amount of isospin charges is bigger than the amount of

baryon charges |d̃B | < |d̃I |. To relate these two regions with the regions discussed above we

make use of the symmetry d̃B ↔ d̃I which interchanges the baryon and isospin densities.

Thus, we expect that for these regions the system moves to a state of zero baryon density

at a fixed isospin density. Such a state can be achieved by pairs of particle and anti-particle

of the same isospin since these pairs only contribute to the isospin density but not to the

baryon density. An example for such pairs are mesons as e.g. π+ and π−.

3.4 Canonical thermodynamics in the small quark mass limit

In the small mass limit m → 0, i.e. Mq ≪ T , the thermal energy is sufficient to excite the

plasma, e.g. by producing pairs of particles and anti-particles. The probability of these

thermal excitations is in the large temperature limit, i.e. small mass limit, approximately

described by the Boltzmann factor

P = e−β(E−
P

i µIi n
Ii
q ) , (3.31)

11For heavy nuclei there is a deviation due to the electric charge of the protons.
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where E is the energy of the plasma. In our setup this expression may be approximated by

P = e−Am+B
P

i d̃Ii µ̃Ii (m) , (3.32)

where A,B are some constants. The dependence of the chemical potentials µ̃Ii on the

mass parameter m induces a slow variation of

K(m) = B
∑

i

d̃Iiµ̃Ii(m) , (3.33)

since the dimensionless chemical potentials µ̃Ii are almost constant for small masses m [27,

figure 8(a)]. Thus, the Boltzmann factor may be written as

P = e−Am+K(m) , (3.34)

where K(m) is slowly varying. We expect that the deviation in the thermodynamic

quantities due to thermal fluctuations, i.e. the deviation from the large mass limit studied

in section 3.3, behaves as the Boltzmann factor described in equation (3.34). In the

example of the free energy the thermal fluctuations F thermal
7 are given by the dimensionless

free energy calculated in equation (3.10) minus the large mass limit of the free energy

given in equation (3.24),

F thermal
7 = F7 −







√
2md̃B − 2d̃B + 0.6 (d̃I )2.25

(d̃B)0.9
for d̃B > d̃I

√
2md̃I − 2d̃I + 0.6 (d̃B)2.25

(d̃I )0.9
for d̃B < d̃I

, (3.35)

A selection of our numerical results at different baryon and isospin densities is given in the

logarithmic plot in figure 17, where we see the expected result at small masses m. We also

observe deviations in the large mass limit, i.e. T ≪ Mq, since the Boltzmann factor given

in equation (3.31) does not give the full quantum statistic needed to describe the system.

4. Grand canonical D7-brane thermodynamics

4.1 The grand canonical ensemble:

Grand potential, entropy, energy and speed of sound

In this section we investigate the properties of the grand canonical ensemble. For this

purpose, we have to use the renormalized Euclidean action (3.5). It is proportional to the

grand potential

Ω7 = TIR =
λNcNfV3T

4

32
W7(m, µ̃) , (4.1)

with the dimensionless quantity

W7(m, µ̃) =
1

Nf
G(m, µ̃) − 1

4

[(
ρ2
min −m2

)2 − 4mc
]

. (4.2)
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Figure 17: The deviation in the free energy due to thermal fluctuations F thermal
7 versus the mass

parameter m as defined in equation (2.45) at a baryon d̃B = 0.5 (left), d̃B = 2 (right) and different

isospin density d̃I for Nf = 2 in a logarithmic plot. The different colors correspond to different

isospin densities d̃I = 0 (black), d̃I = 1

4
d̃B (green), d̃I = 1

2
d̃B (blue), d̃I = 3

4
d̃B (red) and d̃I = d̃B

(orange).

Since we must also consider Minkowski embeddings in the grand canonical ensemble, we

rewrite G(m, µ̃) from equation (3.6) in the coordinates L and r suitable for Minkowski

embeddings and for constant gauge fields

G(m) = Nf

∫ ∞

0
dr
[

f f̃r3
√

1 + (∂rL)2 + (r + L∂rL)
[
m2 −

(
r2 + L2

)]]

. (4.3)

For Minkowski embeddings, the grand potential does not depend on the chemical potential

and therefore coincides with the free energy at zero chemical potential [25]. Since the free

energy determines the thermodynamics entirely, we may apply the results of [25].

We calculate the thermodynamic quantities in the black hole phase numerically by

evaluating the canonical results at a fixed chemical potentials. The transformation to

fixed chemical potential can again be done, as in section 2.5, by the functions d̃i(µ̃i,m),

which is the inverse of (2.37). Only the speed of sound has to be recalculated as it is no

thermodynamic state function. The difference to the result (3.21) in the canonical ensemble

is that the derivative now acts on the density instead of the chemical potentials,

V2
s (m, µ̃) = mc− 1

3
m2 ∂c

∂m
+

2

Nf

Nf∑

i=1

µ̃i

(

m
∂d̃i

∂m
− 4d̃i

)

(4.4)

since the specific heat in the grand canonical ensemble is determined by cV =
(

∂E
∂T

)

V,µ

(cf. derivation in section 3.1.4).

4.1.1 Numerical results for the grand potential, entropy, energy and speed of

sound

In figure 18, 19 and 20 we present numerical results for the thermodynamic quantities in the

grand canonical ensemble for Nf = 2 at different baryon and isospin chemical potentials.

Figure 18 shows the dimensionless grand potential W7 versus the mass parameter m

as calculated by equation (4.2). we compare the grand potential given in figure 18 with the
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Figure 18: The dimensionless grand potential W7 versus the mass parameter m as defined in

equation (2.45) at baryon chemical potential µB/Mq = 0.01 (a), µB/Mq = 0.1 (b) and µB/Mq = 0.8

(c) for the case Nf = 2. The dotted purple curve corresponds to Minkowski embeddings and the

five other curves to black hole embeddings with isospin chemical potential µI = 0 (black), µI = 1

4
µB

(green), µI = 1

2
µB (blue), µI = 3

4
µB (red) and µI = µB (orange).
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Figure 19: The dimensionless entropy S7 versus the mass parameterm as defined in equation (2.45)

at baryon chemical potential µB/Mq = 0.1 (left) and µB/Mq = 0.8 (right) for the case Nf = 2. The

dotted purple curve corresponds to Minkowski embeddings and the five other curves to black hole

embeddings with isospin chemical potential µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue),

µI = 3

4
µB (red) and µI = µB (orange).
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Figure 20: The dimensionless speed of sound relative to the conformal case V2
s versus the mass

parameterm as defined in equation (2.45) at baryon chemical potential µB/Mq = 0.01 (a), µB/Mq =

0.1 (b) and µB/Mq = 0.8 (c) for the caseNf = 2. The dotted purple curve corresponds to Minkowski

embeddings and the five other curves to black hole embeddings with isospin chemical potential

µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue), µI = 3

4
µB (red) and µI = µB (orange).
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Figure 21: (a) The dimensionless grand potential W7, (b) speed of sound V2
s and (d) the chiral

condensate c versus the mass parameter m as defined in equation (2.45) near the phase transition

at µB/Mq = 0.01 for Nf = 2. The different colors of the curves corresponds to the different isospin

chemical potentials µI = 0 (black), µI = 1

4
µB (green), µI = 1

2
µB (blue), µI = 3

4
µB (red) and

µI = µB (orange). The purple curve corresponds to Minkowski embeddings.

result where no finite charges are considered [25]. The deviation between these two cases

is induced by the finite densities given in figure 7 and 8. Since the densities d̃Ii are all zero

for m = 0, there is no deviation. By increasing the mass m, the densities and the deviation

grow. At m ≈ 1 the densities are maximal for small chemical potentials and therefore, the

deviation becomes smaller as we increase m further and we get a phase transition similar

to the case without chemical potentials (see figure 18 (a)). For larger chemical potentials

but still (µB +µI)/Mq < 1 (figure 18 (b) and black curve in figure 18 (c)), the deviation to

the case without chemical potential is much larger and the position of the phase transition

moves to larger mass m. For (µB + µI)/Mq = 1 (green curve in figure 18 (c)), the grand

potential approaches a constant value in the limit m→ ∞. This value is smaller than the

value in the Minkowski phase, such that there is no phase transition between black hole and

Minkowski embeddings possible. For even larger chemical potentials (µB + µI)/Mq > 1,

the grand potential diverges to −∞ as m → ∞. We expect the black hole embeddings to

be thermodynamically favored for all masses m if (µB + µI)/Mq > 1.

Figure 19 shows the entropy S7 versus the mass parameter m. For small chemical

potentials, the entropy behaves as the zero chemical potential result from [25]. By in-

creasing the chemical potentials the spiral behavior disappears and the entropy decreases

monotonically (see figure 19 (a)). For large chemical potentials presented in figure 19 (b)

the entropy changes its behavior dramatically. It increases to a maximum and decreases

again towards the values obtained for the Minkowski embeddings as we increase the mass

m. For even larger chemical potentials the entropy diverges to ∞ as m→ ∞. The energy

behaves like the entropy and we therefore do not present it separately.

Figure 20 shows the speed of sound V2
s as calculated from equation (4.4). In the speed

of sound there is no dramatic change aside from the transition at (µB + µI)/Mq = 1 as

we increase the chemical potential. By increasing the mass m it always decreases until the

phase transition and increases again in the Minkowski phase. The magnitude of the speed

of sound close to the phase transition increases as we increase the chemical potentials.

4.2 Phase transition/phase diagram in the grand canonical ensemble

We review the regions in the phase diagram for the pure baryonic case, where Minkowski
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Figure 22: (a) Sketch of the possible embeddings in the grand canonical ensemble for one brane:

In (A) only Minkowski embeddings, in (B) Minkowski and black hole embeddings and in (C) only

black hole embeddings can exist. In (B) only one or a mixture of the two embeddings can be ther-

modynamically preferred. (b) Contour plot of the phase diagram in the grand canonical ensemble

for Nf = 2: Contours label the value m−1 of the phase boundary. For small chemical potential the

phase diagram is approximately O(2) invariant in agreement with the symmetry discussed in sec-

tion 2.3.1. For larger chemical potentials the rotation symmetry breaks down and there is only an

Z4 symmetry left. For (µB +µI)/Mq > 1, there is no transition between black hole and Minkowski

embeddings. Below the hypersurface the Minkowski embeddings are thermodynamically favored.

Above the hypersurface black hole embeddings are preferred.

and black hole embeddings can be constructed. From [23, 25] it is known that Minkowski

embeddings can only exist for m & 1.3. In [28] it is shown that there is a region (large

m and small µ/Mq), where black hole embeddings cannot exist (see also our numerical

results in figure 4 (a) and (b)). Nevertheless, there is a region where Minkowski and

black hole embeddings both can be constructed, but only one or a mixture of both is

thermodynamically favored. In figure 22 (a) we sketch these regions.

In the following we determine the position of the phase transition numerically. For this

purpose, we look for a crossing point of the grand canonical potential calculated using black

hole and Minkowski embeddings. Figure 21 shows the free energy, the speed of sound and

the chiral condensate close to this transition. The entropy and the energy show a similar

behavior as the chiral condensate.

By varying the chemical potentials, we map out the phase diagram for the grand canon-

ical ensemble shown in figure 22 (b). For lower values of m−1, the Minkowski embeddings

are the thermodynamically favored embeddings and for larger ones above the hypersurface

the black hole embeddings are preferred. The contours at small chemical potentials show

that the phase diagram is approximately O(2) invariant, in agreement with the discus-

sion in section 2.3.1. This rotation symmetry breaks down for larger chemical potentials
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and the discrete Z4 symmetry is left. For (µB + µI)/Mq > 1 the black hole embeddings

are the thermodynamically preferred embeddings for all masses m. Therefore, there is no

phase transition between black hole and Minkowski embeddings for chemical potentials

(µB +µI)/Mq > 1. This is the natural extension of the pure baryonic result [28, 51] consid-

ering the sum of the baryon and isospin chemical potential µB +µI as the relvant quantity.

Our numerical results suggest that the phase transition between black hole and

Minkowski embeddings is first order for finite chemical potentials as in the case of zero

chemical potentials [23, 25]. However, in [51] the authors show analytically that the phase

transition in the pure baryonic case is second order at zero temperature. We expect that the

same is true if we include the isospin charges. Therefore, the order of the phase transition

must change from first to second order at one point of the phase boundary. Due to numeri-

cal errors we cannot strictly distinguish between first and second order phase transitions.12

However, we argue in the following that this point should be located at zero temperature.

In general at a critical point, where a phase boundary ends, a first order phase transition

becomes second order [47]. We do not observe that the phase transition disappears. Thus,

a critical point can only be located a the end of the phase boundary, i.e. at zero temperature

or zero chemical potentials. Since the phase transition at zero chemical potentials is clearly

first order [23, 25], the critical point can only be located at zero temperature. Therefore, we

expect a second order phase transition at zero temperature. To strengthen this argument

one has to expand the analytic studies in [51] to the next order in the temperature T and

determine analytically the order of the phase transition for a small but finite temperature T .

4.3 Grand canonical thermodynamics in the large quark mass limit

In the large quark mass limit m → ∞, i.e. Mq ≫ T , the Minkowski embeddings are

thermodynamically favored for small chemical potentials (µB + µI)/Mq . 1. Since in

the Minkowski embedding the chiral condensate and the thermodynamic quantities are

independent on the chemical potentials, they all vanish for m → ∞ as in the case of zero

chemical potentials [25]. The asymptotic behaviour is given by

W7 ∼ − 1

12m4
, S7 ∼ 2

3m4
, E7 ∼ 7

12m4
, c ∼ − 1

6m5
. (4.5)

However for chemical potentials greater than the critical values, black hole embeddings

with finite baryon and isospin densities are preferred. From the studies of the canonical

ensemble, we know that the finite densities break supersymmetry and conformal invariance

and therefore the thermodynamic quantities and the chiral condensate do not vanish in the

large mass limit any more.

In this section we study the system in the grand canonical ensemble and compare it

with the canonical ensemble, which we studied in section 3.3. In figure 23 and 24 we present

the baryon and isospin density, the chiral condensate and energy at a fixed mass m = 20

versus the baryon and isospin chemical potential. The grand potential and the entropy

behave like the energy or the chiral condensate. The phase transition between Minkowski

and black hole embeddings is along the line (µB + µI)/Mq ≈ 1. Since the quantities do

12It is numerically very challenging to construct all black hole embeddings close to the phase transition.
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(a) (b)

Figure 23: (a) The baryon density d̃B, (b) the isospin density d̃I versus the baryon and isospin

chemical potential µB/Mq, µ
I/Mq at a fixed mass parameter m = 20, the mass parameter m is

defined in equation (2.45).

(a) (b)

Figure 24: (a) The chiral condensate c and (d) the energy E7 versus the baryon and isospin

chemical potential µB/Mq, µ
I/Mq at a fixed mass parameter m = 20, where the mass parameter

m is defined in equation (2.45).

not depend on the chemical potentials in the Minkowski embeddings, we see a plateau in

the region (µB + µI)/Mq . 1 where all the presented quantities in figure 23 and 24 are

approximately zero. After the phase transition the baryon and isospin density increase

rapidly (d̃B , d̃I ≈ 8 · 104 at µB/Mq = µI/Mq = 2.5 see figure 23). Since we learn from the
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investigation of the canonical ensemble that the thermodynamic quantities and the chiral

condensate depend at least linearly on the densities, the quantities also increase or decrease

very fast after the phase transition (see figure 24).

In the contour plots of the baryon and isospin density (see figure 23) we see a turning

point in the contour lines at µB = µI for small chemical potentials. Since there is a phase

transition between the regions 0 ≤ d̃I < d̃B and 0 ≤ d̃B < d̃I in the canonical ensemble, we

also expect a phase transition between the regions 0 ≤ µI < µB and 0 ≤ µB < µI in the

grand canonical ensemble. In the canonical ensemble this phase transition is clearly marked

by a discontinuous step in the chemical potentials, and by a kink in the thermodynamic

quantities and the chiral condensate (see figure 15). In the grand canonical ensemble this

phase transition is not visible in the contour plots of the baryon and isospin density. The

thermodynamic quantities and the chiral condensate also appear to behave smoothly at

this point (see figure 24). Close to the line µB = µI , the thermodynamic quantities depend

only on the sum of baryon and isospin chemical potential, µB +µI . It appears that there is

an inconsistency in the transformation between the grand canonical and canonical ensemble

since we only observe a phase transition in the canonical ensemble.

In the following we resolve the inconsistency and show that a new phase must be

included in the grand canonical phase diagram (see figure 22). For this purpose, we

determine the different regions in the grand canonical phase diagram figure 22, which

the canonical and the grand canonical ensemble control. In the canonical ensemble, the

possible values for the chemical potentials µB/I are 0, Mq/2 and Mq (see figure 16 and

equations (2.41), (2.42)) in the limit m → ∞. Different states in the canonical ensem-

ble determined by (d̃B , d̃I ,m → ∞) are mapped to a single state in the grand canonical

ensemble, e.g. (µB = Mq, µ
I = 0,m → ∞). Therefore, the phase transition observed in

the canonical ensemble (see figure 16) in the limit m → ∞ cannot be seen in the grand

canonical ensemble since the two dimensional density plane is mapped to three different

points in the grand canonical ensemble (µB = Mq, µ
I = 0), (µB = Mq/2, µ

I = Mq/2)

and (µB = 0, µI = Mq). These three points are located along the phase boundary of the

Minkowski phase (µB + µI)/Mq ≈ 1 in figure 23 and 24. However, we can analyze the

plots in the grand canonical ensemble in this section for finite mass. We also observe in

the canonical ensemble that for finite mass and large densities the phase transition in the

density plane disappears slowly, such that there is no inconsistency between the canonical

and grand canonical ensemble in the region of finite mass m.

Since we cannot map bijectively the canonical to grand canonical ensemble in the

region of large mass m and chemical potentials µB/I ≈ Mq, the considered state of our

system cannot be globally stable, e.g. [56, section III]. Since the energy develops huge

values (E7 ≈ 106 at µB = µI = 2Mq figure 24), this also suggest that the considered state

is globally unstable.

In QCD, it is expected that mesons condense at small temperature and large isospin

chemical potential, which corresponds to our unstable region. See [57 – 59] for examples of

vector condensation and [46, 60, 61], as well as [62, 63] for examples of pion condensation.

We expect similarly to QCD a new stable phase, which is determined by the condensation

of mesons. These mesons are dual to fluctuations about the background. In section 6 we
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Figure 25: The diffusion coefficient DT versus the mass parameter m as defined in equation (2.45)

at d̃B = 5 · 10−5 (a) and d̃B = 20 (b). The five different curves correspond to d̃I = 0 (black),

d̃I = 1

4
d̃B (green), d̃B = 1

2
d̃B (blue), d̃B = 3

4
d̃B (red) and d̃I = d̃I (orange). (c) is the ”enlarged”

phase diagram, where we plot the position of the minimum of the diffusion coefficient versus the

densities. (d) shows a contour plot of the ”enlarged” phase diagram, which demonstrates the

breaking of the rotational symmetry O(2) down to the discrete symmetry Z4.

will discuss these fluctuations and indeed find the expected new phase.

5. Hydrodynamics

In this section we consider the effective diffusion coefficient computed from the membrane

paradigm developed in [10] and extended in [39]. The diffusion coefficient for the pure

baryonic case is presented in [43]. To include isospin density we use the following proce-

dure. The finite baryon and isospin density enter the diffusion coefficient through the D7

embedding function χ(ρ, d̃B , d̃I) which appears in the metric G(ρ, d̃B , d̃I) (2.6). We obtain

the explicit embedding function by solving its equation of motion (2.43) and then simply
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plug in the metric into the diffusion formula for the case of zero densities13

D =

√
G

G11

√−G00G44

∣
∣
∣
∣
∣
ρ=1

∫ ∞

ρ=1

−G00G44√
−G

. (5.1)

The calculation of D makes use of the isospin depending embedding function χ(ρ, d̃B , d̃I).

Thus, we call it the effective baryon diffusion coefficient. This procedure yields the plots

given in figure 25 (a) and (b).

In the limit m → ∞ and m → 0, the diffusion coefficient approaches always D =

1/(2πT ), which coincides with the result for the diffusion coefficient of R-charges in N = 4

SYM. For zero densities the diffusion coefficient D vanishes at the phase transition because

all the quarks are bound to mesons [39]. If we increase the baryon and isospin densities,

there are always free quarks available and the diffusion coefficient never vanishes [43]. For

densities larger than the critical one, the first order phase transition disappears. The only

structure in DT which survives in the large densities region is a minimum. We consider

this minmum of the diffusion coefficient as a hydrodynamic crossover point. Including

these crossover points in the thermodynamical phase diagram from figure 14 (a), we obtain

figure 25 (c), where the surface marks the phase transition and cross over point, respectively.

As we expect, the rotational symmetry O(2) is completely broken for large densities and

in the case Nf = 2 there is only the discrete symmetry Z4 left.

It is important to notice is that the baryon density increases the diffusion coefficent

as we see in figure 25 (a), (b) and [43]. Increasing the isospin density instead reduces the

diffusuion coefficient (see figure 25 (b)). Therefore, the effects of the baryon and the isospin

density on this effective baryon diffusion coefficient are opposite.

6. Mesons at finite chemical potential

In this section we use the AdS/CFT correspondence to calculate the mesonic spectral

function of the field theory by investigating the fluctuations of D7-branes. We then study

the effects of chemical potentials on the meson spectrum.

As in [39], we interpret resonances in the spectral functions of flavor currents as quasi-

particle bound states, which are identified with mesons. A direct verification of this identi-

fication was given in [43]. There the congruence of the spectra obtained from spectral func-

tions and the analytically known meson spectra from [44] was shown in an appropriate limit.

6.1 Mesonic bound states and brane fluctuations

To describe mesons, we compute the two point correlation function of flavor currents J(~x)

of the field theory. The retarded Green function GR in momentum space may be written as

GR(ω,q) = −i

∫

d4x ei~k~x θ(x0) 〈[J(~x), J(0)]〉 . (6.1)

13Notice that a strict dervivation of the diffusion coefficent for the case of finite densities would change

equation (5.1) such that terms explicitly depending on the finite densities appear. We leave this task for

further studies and restrict our analysis to equation (5.1).
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We write ~k for the four-momentum vector with spatial three-momentum q and timelike

component ω, such that ~k = (ω,q)T. The description of the spectrum of mesons is given

in terms of the spectral function R(ω,q), defined as

R(ω,q) = −2 ImGR(ω,q). (6.2)

Poles in the Green function give rise to peaks in the spectral function, which we will study

below. The position, magnitude and width of these peaks are determined by the position

and structure of the poles of GR. They encode the mass and lifetime of the mesons [36 – 38].

To compute the current correlator in (6.1), we use the AdS propagator of the relevant

supergravity field. The dual gravity field to the scalar, pseudo-scalar and vector flavor

currents are the fluctuations of the probe D7-branes and the fluctuations of the gauge field

on the branes. In terms of the coordinates introduced in section 2, the scalar currents

are dual to fluctuations of the scalar embedding function θ(ρ), the pseudo-scalar currents

correspond to fluctuations of the angular embedding φ(ρ), and the vector current is mapped

to fluctuations of the gauge field A(ρ) on the branes.

6.1.1 Calculation of spectral functions

The computation is performed following the prescription of [34, 35]. Moreover, in this

section we extend the results of [43] and make use of the calculations performed there.

The method of calculating spectral functions in a holographic model amounts to solving

the equations of motion for a supergravity field Ã(ρ,q) in AdS space. Then evaluate

GR(ω,q) =
NfNcT

2

8
lim

ρ→∞

(

ρ3∂ρÃ(ρ,~k)

Ã(ρ,~k)

)

(6.3)

to obtain the Green function and eventually make use of (6.2), which gives the spectral

function in terms of the solution Ã(ρ,~k),

R(ω,~k) = −NfNcT
2

4
Im lim

ρ→∞

(

ρ3 ∂ρÃ(ρ)

Ã(ρ)

)

. (6.4)

Note that the formulae for GR and R above describe the result of the procedure described

in [34], tailored to the field and brane configuration used in this paper.

The remaining task is to derive and solve the equations of motion for the field Ã. We

will now follow this procedure for the cases of non-vanishing baryonic or isospin chemical

potential in the case of a theory with Nf = 2 flavors. In particular we concentrate on the

vector mesons, dual to fluctuations Ã of the gauge field A on the D7-brane. For simplicity,

we restrict ourselves to the limit of vanishing spatial momentum q = 0. The vector mesons

show the interesting feature that the spectral lines split up in the case of non-vanishing

isospin chemical potential [43]. In section 6.3 we will make use of this property to explore

the phase diagram of fundamental matter in the D3/D7 setup.
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6.2 Spectra at finite baryon density

6.2.1 Equations of motion

In the case of pure baryonic chemical potential the relevant action is the DBI-action (2.16),

which now takes the form

S = −TD7

∫

d8ξ Str
√

|det (G+ 2πα′ F )|. (6.5)

We have introduced chemical potentials in section 2.2 and derived the equation of motion

for the background gauge field A and their solution in section 2.3.2.

To calculate the mesonic spectral functions, we now investigate small fluctuations of

the background field configuration, which extremizes the action (6.5). Therefore we add

small fluctuations Ã to the background A,

A 7→ A+ Ã, (6.6)

⇒ F 7→ F + F̃ . (6.7)

Note that according to section 2.2, only the timelike component A0(ρ) of the background

field is non-vanishing. The fluctuations, however, are gauged to have non-vanishing com-

ponents along all Minkowski directions and depend on the Minkowski coordinates ~x and

on the radial coordinate ρ, Ã0,1,2,3 = Ã0,1,2,3(~x, ρ) and Ã4 ≡ 0. We write

G ≡ G+ 2πα′F (6.8)

and in this way cast the Lagrangian for the fluctuations into the form

L =

√
∣
∣
∣det

(

G + 2πα′ F̃
)∣
∣
∣. (6.9)

In general the non-linear structure of the Lagrangian induces couplings between vector

mesons, scalar and pseudo-scalar mesons, as there will be couplings of fluctuations in G and

those of F = dA. However, in the limit of q → 0, which we are working in, these couplings

do not occur [42]. We assume the fluctuations Ã to be small, justifying the consideration

of the linearized equations of motion for the field components Ãµ,

0 = ∂ν

[√

|detG|
(

GµνGσγ − GµσGνγ − G[νσ]Gγµ
)

∂[γÃµ]

]

, (6.10)

where we write upper indices on G to denote elements of G−1.

As in [39] we should consider gauge invariant combinations of field components only.

For arbitrary momentum we are free to choose a reference frame in Minkowski space, such

that ~k = (ω, q, 0, 0), and we have gauge invariant longitudinal and transversal components

E‖ = ωÃx + qÃ0, E⊥ = ωÃx,z. (6.11)

In the limit q → 0, the equations of motion (and therefore also the according Green func-

tions) for all components become identical, since there is no distinction between longitudinal

and transversal modes.
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In momentum space,

Ãµ(ρ, ~x) =

∫
d4k

(2π)4
ei~k~xÃµ(ρ,~k) , (6.12)

the equations of motion (6.10) for the gauge invariant fields are given by

0 =E′′ +
∂ρ

(√

|detG|G22G44
)

√

|detG|G22G44
E′ − G00

G44
̺2

Hω
2E

=E′′ + ∂ρ ln




ρ3f

(
1 − χ2

)2

√

1 − χ2 + ρ2χ′2 − 2 f

f̃2
(1 − χ2)(∂ρA0)2



E′

+ 8w2 f̃

f2

1 − χ2 + ρ2χ′2

ρ4(1 − χ2)
E,

(6.13)

with dimensionless w = ω/(2πT ), and dimensionless coordinate ρ as well as dimensionless

fields Ã 7→ 2πα′

̺H
Ã. A prime denotes a derivative with respect to ρ.

6.2.2 Numerical results and interpretation

We solve the equation of motion (6.13) numerically, using in-falling wave boundary con-

ditions at the black hole horizon. Subsequently we make use of (6.4) (where A 7→ E)

to compute the spectral function. Remember that this function depends parametrically

on the particle density (or on the chemical potential, respectively), which influences the

background field solutions A and the embeddings χ in (6.13).

The large w behavior of the spectral functions can be found analytically and is given by

R0(w, 0) = NfNcT
2πw

2. (6.14)

An example for a spectral function and the oscillations around R0 can be found in

figure 26. One clearly sees the various excitations as peaks in the spectral function. Each

peak corresponds to a quark-antiquark bound state with vanishing angular momentum.

The position wn of a peak corresponds to a (dimensionless) meson mass Mn =

|~k|/(2πT ) = wn. In [43] it was observed that the meson masses obtained in this way

indeed agree with the spectrum from [44], found analytically in the supersymmetric zero

temperature limit d̃→ 0, m→ ∞,

wn =
Mn

2πT
= m

√

(n+ 2)(n + 1)

2
, n = 0, 1, 2, . . . , (6.15)

where m is the parameter defined in (2.45). At finite temperature and baryon density we

will observe deviations from this spectrum. Nevertheless, at small densities and not too

small m, the first peaks in the spectrum still come very close to this formula, see figure 26

with the first peak corresponding to n = 0, the second to n = 1 and so on.

The dependence on temperature is related to the dependence on the quark mass, since

the relevant parameter in the D3/D7-setup is the quotient m. The dependence on this

– 45 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

0 5 10 15 20 25 30 35
0

5000

10 000

15 000

w

R R0

R(w, 0)

d̃ = 0.25

m = 5

Figure 26: A spectral function oscillating around the asymptotic result R0. We plot spectral

functions in units of NfNcT
2/4.

parameter was intensively investigated in [43], extensions to finite momentum and the

coupling to scalar and pseudo-scalar modes can be found in [41, 42].

We work in the canonical ensemble and will now investigate the effects of variations

in d̃. Spectral functions for various finite baryonic d̃ are shown in figure 27. Again, the

peaks in these spectral functions indicate that quarks form bound states. At low baryon

densities the positions of the peaks agree with the supersymmetric result (6.15), e. g. the

peaks at w0 ≈ 5 and w1 ≈ 8.7 in the black curve correspond to the excitations with n = 0

and n = 1 in (6.15). Increasing the quark density leads to a broadening of the peaks, which

indicates decreasing stability of mesons at increasing baryon density [48, 64]. At the same

time the positions of the peaks change, which indicates a dependence of the meson mass

on the baryon density. Further increasing the quark densities leads to the formation of a

new structure at w < 1. We will discuss this structure together with the results at finite

isospin density.

6.3 Spectra at finite isospin density

6.3.1 Equations of motion

To investigate isospin effects, we again start from the action (2.16). This time we choose

F as in (2.10) with only F I 6= 0. Since the ρ-dependent time component of the gauge

field generates the chemical potential on the field theory side, again we only have non-

zero components F a
40 = −F a

04 in the background. Now a is an index labeling the SU(2)

components. So our gauge fields A not only carry Lorentz-indices but additionally SU(2)

gauge indices, as in Aa
µ with a = 1, 2, 3. In general the field strength tensor therefore has

elements F a
µν = 2∂[µA

a
ν] + fabcAb

µA
c
ν , with structure constants fabc = εabc.

In the non-Abelian field strength tensor, the term quadratic in the gauge field de-

scribes a self interaction of the gauge field. The coupling constant for this interaction

may be determined by a redefinition of the gauge field, such that the kinetic term of the

effective four-dimensional theory has the canonical form. In appendix D we show that the
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Figure 27: Spectral functions for various baryon densities d̃, again normalized to NfNcT
2/4. The

black and brown curves for small d̃ show meson states around w0 = 5 and higher excitations. At

higher values of d̃ these excitations disappear, and at very high densities a new structure forms at

small w.

redefinition is given by

A 7→ c√
λ
A , (6.16)

where the dimensionless constant c depends on the geometry of the D7 worldvolume direc-

tions along ρ and on the S3, which are transverse to the directions of the D3. In particular,

c is independent of the ’t Hooft coupling λ. Determining the exact value of c is left to

further work in terms of the ideas presented in appendix D. In the following we set c = 4π√
2
.

The field strength tensor in the redefined fields is given by

F a
µν = 2∂[µA

a
ν] +

c√
λ
fabcAb

µA
c
ν (6.17)

We make use of the derivations performed in [43] (where the above redefinition was

implicitly used) and assume the isospin chemical potential to be oriented the direction

labeled by a = 3, as motivated in (2.10). Therefore the only non-vanishing background

component is F 3
40 = −F 3

04, which coincides with the background for the case of a baryonic

chemical potential.

In dimensionless quantities, as in the previous subsection, the linearized equations of

motion in the case of vanishing spatial momentum for the components Ãa
µ of gauge field

fluctuations Ã can be derived as

0 = ∂κ

[√

|detG| (GνκGσµ − GνσGκµ) F̌ a
µν

]

−
√

|detG| ̺H
2

2πα′ A
3
0f

ab3
(
Gν0Gσµ − GνσG0µ

)
F̌ b

µν ,
(6.18)

where F̌ a
µν = 2∂[µÃ

a
ν] + c/

√
λfab3A3

0(δ0µÃ
b
ν + δ0νÃ

b
µ) ̺2

H/(2πα
′) contains all field strength

contributions linear in Ã.

To solve these equations of motion, we first introduce the gauge invariant fields Ea as

in (6.11) and then perform another change of basis to express the equations of motion in
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terms of the fields

X = E1 + iE2, Y = E1 − iE2, E3. (6.19)

In this basis the equations of motion decouple and may be written as

0 = X ′′ +
∂ρ

(√

|detG|G44G22
)

√

|detG|G44G22
X ′ − 4

̺4
H

R4

G00

G44
(w − m)2X , (6.20)

0 = Y ′′ +
∂ρ

(√

|detG|G44G22
)

√

|detG|G44G22
Y ′ − 4

̺4
H

R4

G00

G44
(w + m)2 Y , (6.21)

0 = E3′′ +
∂ρ

(√

|detG|G44G22
)

√

|detG|G44G22
E3′ − 4

̺4
H

R4

G00

G44
w

2E3 , (6.22)

where we introduced

m =

√
2 c

4π
A3

0(ρ). (6.23)

Here A3
0(ρ) is the dimensionless background gauge field. The quantity m is related to the

dimensionful background field A3
0(ρ) by m = c√

λ

A3
0(ρ)

2πT .

As a result of the introduction of an isospin chemical potential instead of a baryonic

one, we end up with three equations of motion for the decoupled fields X, Y and E3. These

equations now will have three distinct solutions because of the differences in the last terms

of (6.20) to (6.22). Since the difference is a shift in w one would expect the solutions X

and Y to be shifted versions of E3. However, the shift parameter m does depend on ρ.

The equation of motion for E3 is identical to the baryonic case and as such was discussed

in the previous subsection.

The three solutions X, Y and E3 constitute the isospin triplet of mesons which may be

constructed out of the isospin 1/2 quarks of the field theory. This is similar to the ρ-meson

in QCD. The mode E3 coincides with the solution in case of a pure baryonic chemical

potential, while the other two solutions have peaks in the spectral function at lower and

higher values of w [43]. The magnitude of this splitting of the spectral lines is determined

by the chemical potential.

In the limit of zero frequency w → 0, equations (6.20) and (6.21) coincide and will

result in identical solutions X and Y . In this limit the solution E3, though, differs from

X and Y , by means of the last term. So for small frequencies w, we expect differences

between the solutions E3 and X, Y .

6.3.2 Numerical results and interpretation

We now investigate the effects of finite isospin density on the spectrum. After solving (6.20)

to (6.22) numerically, the correlators may eventually be evaluated as given by (6.4), where

A has to be replaced by E3, X or Y . The peaks in the spectral functions again correspond

to mesons.

An interesting feature at finite isospin chemical potential is the formation of a new

peak in the spectral function in the regime of small w at high density/high chemical
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Figure 28: Spectral function calculated from (6.21). A new peak forms at high densities.

potential, see figure 28. Notice that compared to the baryonic case the density, at which

the new peak forms, is about two orders of magnitude smaller. As in the baryonic case,

the excitations related to the supersymmetric spectrum broaden, the corrsponding mesons

become unstable.

One should keep in mind that the structure of the spectral function is determined by

the pole structure of the retarded correlator (6.1). The poles of this function are located in

the complex ω-plane at positions Ωn ∈ C. The spectral functions show the imaginary part

of the correlator at real valued ω. Any pole in the vicinity of the real axis will therefore

introduce narrow high peaks in the spectral function, while poles far from the real axis

have less influence and merely introduce small and broad structures.

In reminiscence of the real valued normal modes of solutions for oscillators the complex

Ωn are called quasinormal modes. The imaginary part of the quasinormal modes describes

damping, as long as ImΩn < 0. The figures shown in this section indicate a dependence

of the position of the quasinormal modes on the chemical potential/particle density. From

figure 28 we deduce that a quasinormal mode approaches the origin of the complex ω plane

as the particle density is increased. We observe a pole at w = 0 for a certain particle density

d̃crit, the value depends on m. An impression of the variation in the spectral function is

given in figure 29.

In figure 30 we qualitatively sketch the result from the investigation of the behavior of

the quasinormal modes closest to the origin of the complex w-plane. These modes do not

produce the peaks corresponding to the spectrum (6.15). At low densities all quasinormal

modes are located in the lower half plane. When increasing the isospin density, the modes of

the solutions X and Y to (6.20) and (6.21) move towards the origin of the frequency plane.

At the same time two quasinormal modes of E3 move towards each other and merge on the

negative imaginary axis, then travel along the axis towards the origin as one single pole. At

the critical value of d̃ the modes from X and Y meet at the origin, the quasinormal modes

from E3 still reside in the lower half plane. This observation matches the discussion below

equations (6.20) to (6.22), where we expected X and Y to behave similarly at small w,
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Figure 29: Plot of the spectral function around w = 0. At a value of d̃ = 15.35 a pole appears at

w = 0.

Imw

Rew

⌣̈

⌢̈

Figure 30: A sketch of the positions and movements of the quasinormal modes under changes of

d̃. Color indicates the function: red = Y , green = X , blue = E3. The symbols indicate the range

of d̃: ◦ < d̃crit, • = d̃crit, � > d̃crit. Poles in the gray region introduce instabilities.

while E3 should differ from this behavior. Upon further increasing the isospin density, the

modes Ω from X and Y enter the upper half plane, maintaining their distinct directions.

The sign change in ImΩ from Im Ω < 0 to Im Ω > 0 indicates that a damped resonance

changes into a self-enhancing one, and thus introduces an instability to the system. Figure

figure 31 illustrates the transition of a quasinormal mode of Y from the lower half plane

to the upper half plane. The E3-mode does not enter the upper half plane at any value of

d̃ we considered. Compare this to the values of d̃ in figure 27 and figure 28 at which the

pole induces visible structures at small w. A comparable movement of poles in a different

but related setup was found in [65]. There the quasinormal modes of correlation functions

of electromagnetic currents were investigated as a function of temperature.

In the following we interpret the observation of decaying mesons and the emergence

of a new peak in the spectral function in terms of field theory quantities. In particular we

speculate on a new phase in the phase diagram for fundamental matter in the D3/D7 setup.

In the far UV, the field theory dual to our setup is supersymmetric, thus containing
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Figure 31: Contour plot of the spectral function for Y around w = 0 in the complex w-plane.

Left: d̃ = 10 < d̃crit, center: d̃ = 15.352 = d̃crit, right: d̃ = 20.704 > d̃crit. The three graphs where

generated for m = 3, dark shading indicates small values of R, light shading indicates large values.

A pole in the upper half plane introduces an instability.

scalars as well as fermions, both of which contribute to the bound states we identified

with mesons, even when supersymmetry is eventually broken. The meson decay at non-

vanishing particle densities may be explained by the change of the shape of the potential

for the scalars in the field theory upon the introduction of a non-vanishing density. As

outlined in appendix C, a chemical potential may lead to an instability of the theory, since

it induces a runaway potential for the scalar fields at small field values [66]. Nevertheless,

interactions of φ4-type lead to a Mexican hat style potential for larger field values. In this

way the theory is stabilized at finite density d̃ while the scalar fields condensate. This

squark condensate presumably contributes to the vev of the scalar flavor current,

d̃ ∝
〈
J0
〉
∝
〈
ψ̄ γ0 ψ

〉
+
〈
φ ∂0φ

〉
. (6.24)

In the AdS/CFT context the presence of an upside-down potential for the squark vev has

been shown in [50] using an instanton configuration in the dual supergravity background.

The occurrence of a pole in the upper half plane of complex frequencies at finite d̃crit

indicates an instability of the theory. A comparable observation was made in [48], where

in fact the vector meson becomes unstable by means of negative values for its mass beyond

some critical chemical potential. The difference between this work and [48] is that our

model includes scalar modes in addition to the fundamental fermions. Nevertheless, in

both models an instability occurs at a critical value of the chemical potential. The theory

may still be stabilized dynamically by vector condensation [67]. In this case the system

would enter a new phase of condensed vectors at densities larger than d̃crit, in accordance

with the expectation from QCD calculations [57 – 59].

We perform the analysis of the pole structure at w = 0 for various m, and interpret the

phenomenon of the transition of poles into the upper half plane at finite critical particle

density as a sign of the transition to an unstable phase. We relate the critical particle

density d̃crit to the according chemical potential µ̃I by (2.37) and use the pairs of m and

critical dimensionful µ to trace the line of the phase transition in the phase diagram of

fundamental matter in the D3/D7 setup. The result is drawn as a green line in figure 32.

The picture shows the (µI , T )-plane of the phase diagram and contains three regions, drawn
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Figure 32: The phase diagram for fundamental matter in the D3/D7 setup. In the blue shaded

region D7-branes have the topology of Minkowski embeddings. The white and green regions are

described by black hole embeddings. However, in the green region we interpret our observations as

an instability of the black hole embeddings in the D3/D7 setup.

as blue shaded, white, and green shaded, as well as a blue and a green line, separating the

different regions.

The blue shaded region marks the range of parameters, in which fundamental matter

is described by D7-branes with Minkowski embeddings. The blue line, delimiting the the

blue region, marks the line of phase transitions to the black hole phase, where fundamental

matter is described by D7-branes which have black hole embeddings. This phase transition

was discussed in section 4.2. Using the symmetries (2.33), this phase transition line can

be mapped to the line of phase transitions between Minkowski and black hole embeddings,

present at finite baryon chemical potential [28, 51, 68].

The green line and green shaded region in the phase diagram in figure 32 mark the

observation made in this section. The green line marks the values of d̃crit at which the

pole in the spectral function appears at w = 0. Beyond the green line we enter the green

shaded unstable region.

We observe that the green line asymptotes to a straight line at high temperatures.

Within the values computed by us, this line agrees with the asymptotic behavior of the

contour of particle density with d̃ ≈ 20.5, drawn as a gray line in the phase diagram. We

thus speculate on a finite critical particle density beyond which the black hole phase is

unstable. This interpretation is supported by analogous studies of the phase diagram of

N = 4 super-Yang-Mills theory with R-symmetry chemical potentials, where a similar line

in the phase diagram was discovered [45, 56]. Up to now it is unclear whether the new

phase indeed is unstable or if it only indicates that black hole embeddings are not capable

of describing this state of matter.

Note that the location of the green phase transition line in figure 32 as well as the

results shown in figure 31 and figure 30 are obtained from the analysis of poles in the

spectral functions. These functions in turn are obtained as solutions to equations (6.20)

to (6.22), which do depend on the so far unknown factor c in (6.23). The computation of
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this factor is left to future work. It will determine the exact position of the green phase

transition line in figure 32. This will answer the question whether there is a triple point

in the phase diagram and if the blue and green shaded regions meet at a common border.

Moreover, other poles than the ones investigated here may have influence on the stability

of this system.

7. Conclusion

In this work we have considered a probe of Nf D7 branes embedded in the AdS

Schwarzschild black hole background with an U(Nf ) gauge field. This configuration is

conjectured to be dual to a thermal quantum field theory with isospin and baryon charge.

We have considered both the canonical and grand canonical ensemble. Our detailed study

of this background provides a basis for further studies. For instance it is now possible to

investigate the mesonic excitation spectrum or hydrodynamic properties in detail.

By including isospin density, we find four new phase boundaries coincident with the

fixed points of the accidental symmetries between baryon and isospin density, which our

setup displays. Along the lines of equal densities |d̃B | = |d̃I | and near T = 0, we find a

sharp transition in the chemical potentials. This situation is reminiscent of a corresponding

transition found in two-color QCD [46]. For T = 0 the chemical potential is discontinuous

and a one-to-one correspondence between the thermodynamic conjugate variables d̃ and µ̃

can not be established. This inconsistency between the two ensembles signals an instability

of the setup in that phase region. We expect that vector mesons condense in this region

as is also expected in QCD [46]. A further detailed study of this new phase requires the

investigation of scalar and pseudoscalar fluctuations as well. Furthermore, an analysis of the

possible condensates is required, cf. [48]. This is a promising task for future investigation.

It would also be interesting to study the heat capacity and the quasi-particle spectrum at

low temperature as in [69] in the more general setup provided in this paper. This study

may give a better understanding of the new quantum liquid found in [69].

Here we have restricted to vector fluctuations about the finite isospin density back-

ground. Analyzing these fluctuations, we found an unstable region in the (µI , T ) phase

diagram which is bounded by a line of constant density. We expect that mesons condense

in this unstable phase. The emerging phase structure appears to be a generic feature of

holographic duals with chemical potentials as a similar behavior has been observed for

spinning branes [70] and R-charged black hole backgrounds [56, 71]. It would be interest-

ing to shed more light on the connection between the new phase found in this work and in

the backgrounds mentioned above.

Considering the effective baryon diffusion, we find competing behavior between baryon

and isospin density. For example at a given temperature, increasing d̃B increases the effec-

tive baryon diffusion while increasing d̃I suppresses that diffusion. Note that this effective

baryon density collects both, the effect of finite baryon and of finite isospin density on the

effective baryon diffusion. It would be very interesting to separate these two contributions,

for example by a modification of the membrane paradigm.
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All the numerical results mentioned here were obtained for Nf = 2. However, they

may also be generated for arbitrary Nf ≪ Nc from the general expressions we have

provided here.
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A. Simplification of the DBI action

In this section we give some details for the simplifications done in the equa-

tions (2.21), (2.22), (2.23). We argued that the square root in the action (2.21) is diagonal

in flavor space and the DBI action decouple for the fields defined in (2.22). To prove this,

we first have to calculate the square of the non-vanishing field strength component (F40)
2.

For this calculation we need some multiplication relations for the matrices λi given by

λ1λi = λi i = 1, . . . , Nf

(λi)2 = diag(1, . . . ,

i-th position
︷ ︸︸ ︷

(Nf − 1)2, . . . , 1) i = 2, . . . , Nf

λiλj = diag(1, . . . ,

i-th position
︷ ︸︸ ︷

−(Nf − 1), . . . ,

j-th position
︷ ︸︸ ︷

−(Nf − 1), . . . , 1) i 6= j

(A.1)

and the fact that all matrices λi commute with each other since they are the generators of

the Cartan subalgebra. The i-th diagonal component of the matrix (F40)
2 is then for i = 1

(
(F40)

2
)

11
=







Nf∑

j=1

(F
Ij

40 )2(λj)2 + 2

Nf∑

j=2

F I1
40F

Ij

40λ
1λj + 2

Nf∑

j=2

Nf∑

k=2
k 6=j

F
Ij

40F
Ik
40λ

jλk







11

=





Nf∑

j=1

F
Ij

40





2

= (∂̺X1)
2

(A.2)

– 54 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
1

and for i 6= 1

(
(F40)

2
)

ii
=

[ Nf∑

j=1
j 6=i

(F
Ij

40 )2(λj)2 + (F Ii
40)

2(λi)2 + 2
∑

j=1
j 6=i

F Ii
40F

Ij

40λ
iλj

+ 2

Nf∑

j=1

Nf∑

k=1
k 6=i

F
Ij

40F
Ik
40λ

jλk

]

ii

=







Nf∑

j=1
j 6=i

F
Ij

40 − (Nf − 1)F Ii
40







2

= (∂̺Xi)
2 ,

(A.3)

where we used the new fields as defined in equation (2.22) in the last equalities. With this

choice of the new fields and since F40 is diagonal in the flavor space, each component of

the diagonal is given by the expression known from the pure baryonic case [27]

(√

λ1 + (2πα′)2G00G44(F40)2
)

ii
=
√

1 + (2πα′)2G00G44((F40)2)ii

=
√

1 + (2πα′)2G00G44(∂̺Xi)2 .
(A.4)

Taking the trace and simplifying the expressions of the metric factors, we get equa-

tion (2.23).

B. Effect of the accidental symmetries for Nf = 3

In this section we give the action of the accidental symmetries discussed in section 2.3.1 in

the physical basis for Nf = 3:

d1↔d2 : dB 7→dB dI2 7→−(dI2 +dI3) dI3 7→dI3

d1↔d3 : dB 7→dB dI2 7→dI2 dI3 7→−(dI2+dI3)

d2↔d3 : dB 7→dB dI2 7→dI3 dI3 7→dI2

d1↔−d1 : dB 7→ 1

3
(dB−2dI2−2dI3) dI2 7→ 1

3
(−2dB+dI2−2dI3) dI3 7→ 1

3
(−2dB−2dI2+dI3)

d2↔−d2 : dB 7→ 1

3
(dB +2dI2) dI2 7→ 1

3
(4dB−dI2) dI3 7→ 1

3
(−2dB+2dI2+dI3)

d3↔−d3 : dB 7→ 1

3
(dB +2dI3) dI2 7→ 1

3
(−2dB+dI2 +2dI3) dI3 7→ 1

3
(4dB−dI3) .

(B.1)

Since the transformation matrix to the physical basis for Nf = 3 is not an orthogonal

matrix, there is no induced approximate O(3) symmetry in the physical basis. This is in

general also true for all cases with Nf ≥ 3.
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C. Chemical potentials in field theories: runaway potential and Bose-

Einstein condensation

In our setup we consider a theory which is supersymmetric in the far UV. Its fundamental

matter consists of complex scalars (squarks) and fermionic fields (quarks). In this section

we describe the effect of the chemical potential on the field theory Lagrangian and on the

vacuum as e.g. in [66]. We consider a theory with one complex scalar φ and one fermionic

field ψ with the same mass Mq coupled to an U(1) gauge field Aν . The time component of

the U(1) gauge field has a non-zero vev which induces the chemical potential µ,

Aν = µδν0 . (C.1)

The Lagrangian is given by

L = −Dνφ
∗Dνφ−M2

q φ
∗φ− ψ̄(D� +Mq)ψ − 1

4
FµνF

µν , (C.2)

where Dν = ∂ν − iAν is the covariant derivative and Fµν = ∂µAν − ∂νAµ the field strength

tensor. Expanding the Lagrangian around the non-zero vev of the gauge field, the La-

grangian becomes

L = −∂νφ
∗∂νφ− (M2

q − µ2)φ∗φ+ µJs
0 − ψ̄(∂� +Mq)ψ + µJF

0 , (C.3)

where JS
µ = i[(∂µφ

∗)φ−φ∗(∂µφ)], (Jµ)F = −iψ̄γµψ are conserved currents. These conserved

currents are the population density for the scalar NS and fermionic fields NF , such that

the linear terms in the Lagrangian are µNS and µNF .

The mass term −(M2
q − µ2)φ2 of the Lagrangian (C.3) introduces an instability if

µ > Mq since the corresponding potential V = (M2
q − µ2)φ2 + · · · is not bounded from

below. In some systems this runaway potential is stabilized by higer interactions and

becomes a Mexican hat potential such that the scalar condense and the scalar density

becomes non-zero. This condensation is known as Bose-Einstein-Condensation.

D. Coupling constant for vector meson interaction

In this section we show how the coupling constant for the interaction of vector mesons can

be computed, extending the ideas presented in [44]. This coupling constant in the effective

four-dimensional meson theory can be determined by redefinition of the gauge fields such

that the kinetic term has canonical form. This coupling constant depends on the geometry

of the extra dimensions.

First we consider the eight-dimensional theory determined by the DBI action S
(2)
DBI

expanded to second order in the fluctuations Ã,

S
(2)
DBI =

TD7(2πα
′)2

4

∫

d8ξ
√
−G Gµµ′

Gνν′

Fµ′νFν′µ , (D.1)

where G contains the background fields and we simplify the analysis by considering only

Abelian gauge fields. Defining the dimensionless coordinate ρ = ̺/R and integrating out
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the contribution of the S3, we obtain

S
(2)
DBI =

TD7
(2πα′)2vol(S3)R

4

4

∫

d4x

∫

dρ
√
−G Gµµ′

Gµν′

Fµ′νFν′µ . (D.2)

To obtain a four-dimensional effective theory we have to integrate over the coordinate ρ.

This contribution depends on the geometry induced by the ρ dependence of the metric fac-

tors. However, we expect that it is independent of the ’t Hooft coupling λ. We parametrize

this contribution by c′. The kinetic term of the effective theory is then given by

S
(2)
DBI =

TD7(2πα
′)2vol(S3)R

4c′

4

∫

d4x FµνF
µν , (D.3)

where the prefactor may be written as

TD7(2πα
′)2vol(S3)R

4c′

4
=

λ

g2
YMc

2
, (D.4)

where the numerical values independent of the ’t Hooft coupling are grouped into the

coefficient c. From this we can read off that a rescaling of the form

A 7→ c√
λ
A (D.5)

casts the Lagrangian into canonical form with a prefactor of 1/g2
YM.
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[56] M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly

coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195].

[57] D.N. Voskresensky, On the possibility of the condensation of the charged ρ meson field in

dense isospin asymmetric baryon matter, Phys. Lett. B 392 (1997) 262.

[58] J.T. Lenaghan, F. Sannino and K. Splittorff, The superfluid and conformal phase transitions

of two-color QCD, Phys. Rev. D 65 (2002) 054002 [hep-ph/0107099].

[59] F. Sannino, General structure of relativistic vector condensation, Phys. Rev. D 67 (2003)

054006 [hep-ph/0211367].

[60] D.T. Son and M.A. Stephanov, QCD at finite isospin density: from pion to quark antiquark

condensation, Phys. Atom. Nucl. 64 (2001) 834 [Yad. Fiz. 64 (2001) 899] [hep-ph/0011365].

[61] D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592

[hep-ph/0005225].

[62] D. Ebert, K.G. Klimenko, A.V. Tyukov and V.C. Zhukovsky, Pion condensation of quark

matter in the static Einstein universe, arXiv:0804.0765.

[63] L.-Y. He, M. Jin and P.-F. Zhuang, Pion superfluidity and meson properties at finite isospin

density, Phys. Rev. D 71 (2005) 116001 [hep-ph/0503272].

[64] A. Paredes, K. Peeters and M. Zamaklar, Mesons versus quasi-normal modes: undercooling

and overheating, JHEP 05 (2008) 027 [arXiv:0803.0759].

[65] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, arXiv:0805.2960.

[66] R. Harnik, D.T. Larson and H. Murayama, Supersymmetric color superconductivity, JHEP

03 (2004) 049 [hep-ph/0309224].

[67] A. Buchel, J. Jia and V.A. Miransky, Dynamical stabilization of runaway potentials at finite

density, Phys. Lett. B 647 (2007) 305 [hep-th/0609031].

[68] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — a

review, Eur. Phys. J. A35 (2008) 81 [arXiv:0711.4467].

[69] A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796.

[70] S.S. Gubser, Thermodynamics of spinning D3-branes, Nucl. Phys. B 551 (1999) 667

[hep-th/9810225].

[71] D. Yamada, Metastability of R-charged black holes, Class. and Quant. Grav. 24 (2007) 3347

[hep-th/0701254].

– 60 –

http://jhep.sissa.it/stdsearch?paper=11%282007%29074
http://arxiv.org/abs/0709.0570
http://jhep.sissa.it/stdsearch?paper=04%282006%29015
http://arxiv.org/abs/hep-th/0512125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C48%2C55
http://jhep.sissa.it/stdsearch?paper=04%281999%29024
http://arxiv.org/abs/hep-th/9902195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB392%2C262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C054002
http://arxiv.org/abs/hep-ph/0107099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C054006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C054006
http://arxiv.org/abs/hep-ph/0211367
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PANUE%2C64%2C834
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C64%2C899
http://arxiv.org/abs/hep-ph/0011365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C592
http://arxiv.org/abs/hep-ph/0005225
http://arxiv.org/abs/0804.0765
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C116001
http://arxiv.org/abs/hep-ph/0503272
http://jhep.sissa.it/stdsearch?paper=05%282008%29027
http://arxiv.org/abs/0803.0759
http://arxiv.org/abs/0805.2960
http://jhep.sissa.it/stdsearch?paper=03%282004%29049
http://jhep.sissa.it/stdsearch?paper=03%282004%29049
http://arxiv.org/abs/hep-ph/0309224
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C305
http://arxiv.org/abs/hep-th/0609031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CA35%2C81
http://arxiv.org/abs/0711.4467
http://arxiv.org/abs/0806.3796
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB551%2C667
http://arxiv.org/abs/hep-th/9810225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C3347
http://arxiv.org/abs/hep-th/0701254

